Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hayami Nary

Cho tam giác ABC có H là trực tâm. Vẽ Bx vuông góc AB, Cy vuông góc AC. Hai tia này  cắt nhau tại D. Gọi O là trung điểm của BC. Chứng minh rằng H,O,D là 3 điểm thẳng hàng.

Nguyễn Ngọc Anh Minh
28 tháng 9 2016 lúc 7:57

+ Xét tứ giác BHCD có

BD vuông góc AB; CH vuông góc AB => BD//CH (cùng vuôn góc AB) (1)

CD vuông góc AC; BH vuông góc AC => CD//BH (cùng vuông góc AC) (2)

Từ (1) và (2) => BHCD là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)

+ Nối H với D cắt BC tại O'

=> O'B=O'C (t/c đường chéo hình bình hành) mà O là trung điểm BC => O trùng O' => H; O; D thẳng hàng

Le Thi Khanh Huyen
28 tháng 9 2016 lúc 8:06

Đây bạn :)

Hayami Nary
2 tháng 10 2016 lúc 19:51

Anh Minh trả lời nhanh hơn nên mình chọn bạn đúng nhé! Cảm ơn 2 bạn =))


Các câu hỏi tương tự
bùi huy bình
Xem chi tiết
Nguyễn Hạ Long
Xem chi tiết
Lê Thanh Ngọc
Xem chi tiết
VY forever ARMY love BTS...
Xem chi tiết
Hàn Vũ Nhi
Xem chi tiết
Hàn Vũ Nhi
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Duyên Lương
Xem chi tiết
Bobovàkisskhácnhau Ởđiểm...
Xem chi tiết