Cho tam giác ABC nhọn với trực tâm H. CMR:
a) HA + HB + HC < AB+ AC
b) HA +HB + HC < 2/3(AB +BC + CA)
Gọi H là trực tâm của tam giác nhọn ABC. Chứng minh rằng:
a) HA + HB + HC < AB + AC
b) HA + HB + HC < \(\dfrac{2}{3}\) (AB + BC + CA)
1. Cho tam giác ABC nhọn có trực tâm là H. Chứng minh rằng HA+HB+HC < AB+AC. Từ đó suy ra: HA+HB+HC < 2/3(AB+AC +BC)
2. CMR: d^3 + (d^2)f - def + (e^2)f + e^3 = 0 nếu d+e+f=0
Gọi H là trực tâm tam giác ABC CMR :
a, HA + HB + HC < AB + AC
b, HA + HB + HC < 2/3 ( AB + AC + BC )
Cho tam giác ABC nhọn, trức tâm H .CMR :
a, HA + HB + HB < AB + AC
b, HA + HB + HC < 2/3 ( AB + BC + CA )
Gọi H là trực tâm của tam giác ABC nhọn. Chứng minh rằng: HA+HB+HC<2/3(AB+BC+CA)
Gọi H là trực tâm tam giác ABC. CMR:
a) HA + HB + HC < AB + AC
b) HA + HB + HC < 2/3 ( AB + AC + BC )
Cho tam giác ABC, gọi H, G, O lần lượt là trực tâm, trọng tâm, tâm đường tròn ngoại tiếp của tam giác, M là trung điểm BC
a. CMR : AH = 2* OG
b> CMR : H, G, O thẳng hàng và GH= 2*OG
AI LÀM ĐÚNG MÌNH LIKE CHO
Cho tam giác nhọn ABC, trực tâm H. CMR: HA+HB+HC<2/3 chi vi tam giác ABC