Cho tam giác ABC có góc BAC bằng 105o, đường phân giacstrong CD và đường trung tuyến BM cắt nhau tại K thỏa mãn KB = KC. Gọi H là chân đường cao hạ từ A của tam giác ABC. a. Chứng minh rằng HA = HB b. Tính góc ABC và góc ACB.’
Cho tam giác ABC . Trung tuyến BM và đường phân giác CD cắt nhau tại I thoả mãn IB=IC . Từ A kẻ AH vuông góc BC . Chứng minh rằng IM=IH
1. Cho tam giác ABC cân tại A, có AB= 5cm, BC= 6cm, tia phân giác AD của góc BAC cắt đường trung tuyến BE của tam giác tại G. Tia CG cắt AB tại F
a. So sánh số đo của góc ABC và góc BAC
b. Chứng minh: tam giác ABD= tam giác ACD
c. Chứng minh: F là trung điểm của AB
d. Tính độ dài BG
2. Cho tam giác ABC vuông tại A có AB= 6cm, AC= 8cm. Tia phân giác của góc ABC cắt AC tại D, kẻ DE vuông góc với BC
a. Tính BC
b. Chứng minh: tam giác BDA= tam giác BDE
c. Chứng minh: AD < DC
d. Gọi K là giao điểm của AB và DE. Chứng minh: AE // KC
Cho tam giác ABC cân tại A ( Góc A nhọn ) . Vẽ đường phân giác của góc BAC cắt BC tại H
a. cm HB = HC và AH vuông góc BC
b. Với AB = 30cm , BC = 36cm. Tính độ dài AH
c. Vẽ đường trung tuyến BM của tam giác ABC cắt AH tại G . Tính độ dài AG và BM
d. Qua H vẽ đường thẳng song song với AC cắt AB tại D . Chứng minh ba điểm C , G , D thẳng hàng
cho tam giác ABC vuông tại A ; tia phân giác của góc B cắt AC tại D ;kẻ DH vuông góc với BC (H thuộc BC) tia BA và tia HD cắt nhau tại K . cHỨNG MINH RẰNG :
a, AB=HB ; AK = HC
b, BD VUÔNG góc với KC
C, AH // KC
1)Cho tam giác ABC vuông tại A. Các tia phân giác của góc B và C cắt nhau ở I. Kẻ IH vuông góc với BC(H thuộc BC). Biết HI=1cm, HB=2cm, HC=3cm. Tính chu vi tam giác ABC
2) Cho tam giác ABC có góc B lớn hơn góc C, đường phân giác AD. Gọi H là chân đường vuông kẻ từ A đến BC. Chứng minh rằng góc HAD bằng nửa hiệu của hai góc B và góc C.
3)Cho tam giác ABC vuông tại A. Lấy điểm D trên cạnh AB sao cho góc ACD=1/3 góc ACB. Lấy điểm E trên cạnh AC sao cho ABE=1/3 góc ACB. BE và CD cắt nhau tại O. Gọi k là giao điểm các đương phân giác của tam giác OBC. Tam giác DEK là tam giác gì?
4) Tam giác ABC có góc A bằng 100 độ. Gọi CD là tia đối của tia CB. Tia phân giác của góc B cắt tia phân giác của góc ACD tại K. Tính số đo góc BAK
Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )
a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC
b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.
c) Chứng minh rằng tam giác MDE đều
d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm
Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.
a. Chứng minh tam giác ABI = tam giác AHI
b. HI cắt AB tại K. Chứng tỏ rằng BK=HC
c. Chứng minh rằng BH // KC
d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều
Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)
a. Chứng minh : tam giác AHB= tam giác AHC
b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân
d. Chứng minh BM // AC
Bài toán 1. Cho tam giác ABC, trung tuyến AM, phân giác AN. Từ N vẽ đường thẳng vuông góc với AN cắt AB, AM tại hai điểm P và Q. Từ Q vẽ đường thẳng vuông góc với AB cắt AN tại O. Chứng minh rằng QO\(\perp\)BC
Bài toán 2. Cho\(\Delta\)ABC. Trung tuyến BM và đường phân giác CD cắt nhau tại I thỏa mãn IB = IC. Từ A kẻ AH\(\perp\)BC. Chứng minh rằng IM = IH.
Bài toán 3. Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC, G là điểm trên cạnh AB sao cho GB = 2GA. Các đường thẳng GM và CA cắt nhau tại D. Đường thẳng qua M vuông góc với CG tại E và cắt AC tại K. Gọi P là giao điểm của DE và GK.Chứng minh rằng:
a. DE = BC
b. PG = PE