bn có thể tham khảo cách này
Gọi I là giao điểm của các tia phân giác \(\widehat{KBC}\)và\(\widehat{KCB}\).Khi đó KI là tia phân giác của \(\widehat{BKC}\)
Mặt khác, tam giác KBC có BKC=120o (vì \(\widehat{KBC}=40^o,\widehat{KCB}=40^o\))
Do đó \(\widehat{BKI}=\widehat{CKI}=\widehat{BKE}=\widehat{CKD}=60^o\)
Xét \(\Delta\)BKI và\(\Delta\)BKE ta có:\(\hept{\begin{cases}\widehat{B_2}=\widehat{B_3}\left(gt\right)\\BK\left(chung\right)\\\widehat{BKI}=\widehat{BKE}=60^o\end{cases}}\)
Suy ra \(\Delta\)BKI=\(\Delta\)BKE (g.c.g) =>KE=KI (1)
Tuong tự ta có KD=KI (2)
Từ (1) và (2) suy ra KE=KD hay \(\Delta\)KED cân tại K
Mặt khác,\(\widehat{EKD}=120^o=\widehat{BKC}\)(đối đỉnh)
Do đó \(\widehat{KED}=\widehat{KDE}=\frac{180^o-120^o}{2}=30^o\)
Ta có:
ACB=ACE+BCE
mà ACB=30 độ;ACE=10 độ=>BCE=20 độ
C/m tương tự với góc C ta có CBD=40 độ
Xét tam giác CBK ta có:
KCB + KBC + CKB=180
=> CKB= 180 - KCB - KBC
CKB=180-20-40
=120 độ
mà CKB đối đỉnh với DKE nên DKE=120 (mình ko viết dc kí hiệu góc nha)
Gọi I là giao điểm của các tia phân giác ^KBCvà^KCB.Khi đó KI là tia phân giác của ^BKC
Mặt khác, tam giác KBC có BKC=120o (vì ^KBC=40o,^KCB=40o)
Do đó ^BKI=^CKI=^BKE=^CKD=60o
Xét ΔBKI vàΔBKE ta có:{
^B2=^B3(gt) |
BK(chung) |
^BKI=^BKE=60o |
Suy ra ΔBKI=ΔBKE (g.c.g) =>KE=KI (1)
Tương tự ta có KD=KI (2)
Từ (1) và (2) suy ra KE=KD hay ΔKED cân tại K
Mặt khác,^EKD=120o=^BKC(đối đỉnh)
Do đó ^KED=^KDE=\(\frac{\text{180o−120o}}{2}\)\(\text{ =30o}\)
Thắng Ng giải đúng rồi nhưng sai 1 chỗ nhé, KCB=20 nhé
ta có
ABC = ACE + BCE
mà ACD = 30 độ ACE = 10 độ => BCE = 20 độ
C/m tam giác với góc C ta có
CBD = 40 độ
xét tam giác CBK ta có
KCB + KBC + CKB = 180
=> CKB = 180 - KCB - KBC
CKB = 180 - 20 - 40 = 120 độ
Mình nghĩ là 120 độ nha bạn.
CHÚC BẠN HỌC GIỎI NHA!