Cho tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên nội tiếp đường tròn tâm O bán kính r .Tiếp tuyến tại B và C của đường tròn tâm O bán kính r cắt nhau tại D.
a) Chứng minh tứ giác ABC nội tiếp được đường tròn
b) Đường thẳng BD và AC cắt nhau tại E Chứng minh EB²= EC×EA
c) Từ m trên cung nhỏ BC vẽ MI vuông góc với BC MH vuông góc với AB MF vuông góc với AC Chứng minh E,H,F thẳng hàng
d) cho góc BAC bằng 30 độ Tính theo r diện tích của tứ giác ABCD
Cho đường tròn tâm O bán kính R có đường kính AB, dây cung BC=R.
a) Tính AC theo R và số đo góc B của tam giác ABC.
b) Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn tâm O ở D.
Chứng minh DC là đường tiếp tuyến của đường tròn tâm O.
c) Đường thẳng OD cắt đường tròn tâm O tại I. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác ADC.
Cho tam giác ABC có AB nhỏ hơn AC và góc B AC bằng 60 độ nội tiếp đường tròn tâm O Vẽ đường cao BN và CM của tam giác ABC Vẽ đường kính BD của đường tròn tâm O vẽ ch vuông góc với BD Chứng minh a năm điểm b m n c cùng nằm trên một đường tròn C Chứng minh góc B Chứng minh góc A bằng góc D B C và chứng minh MH = NC
Cho tam giác ABC (AB<AC) có 3 góc nhọn nội tiếp đường tròn O bán kính R. Ba đường cao AD,BE,CF cắt nhau tại H. Gọi I là tâm đường tròn nội tiếp tam giác ABC, J là tâm đường tròn bàng tiếp góc A. Chứng minh: AI.AJ=AB.AC
cho tam giác ABC có 3 góc nội tiếp đường tròn tâm O bán kính R và AH là đường cao của tam giác ABC.Gọi M,N thứ tự là hình chiếu của H trên AB,AC.
1,chứng minh rằng tứ giác AMHN là yws giác nội tiếp
2,chứng minh góc ABC bằng góc ANM
3,chứng minhOA vuông góc với MN.
4,cho biết AH=R.\(\sqrt{2}\).Chứng minh M.O.N thẳng hàng
Tam giác ABC nhọn có AB<AC, đường cao AD,BE,CF, trực tâm H nội tiếp (O) bán kính R
a) Chứng minh BFHD, BFEC nội tiếp
b) chứng minh góc DFE= 2 lần góc EBC
c) Cho số đo cung AB= 90 độ, số đo cung AC= 120 độ. Tính các góc của tam giác DÈ
d) Gọi I là trung điểm của CB. Chứng minh B,F,E,I thuộc 1 đường tròn
Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.
1. Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.
2. Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau.
3. Chứng minh rằng OC vuông góc với DE.
Cho tam giác ABC (AB < AC) có 3 góc nhọn nội tiếp trong đường tròn tâm O bán kính R. Gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC
a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn
b) Vẽ đường cao AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau .Suy ra AB.AC=2R.AD
1.Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(O;R),hai đường cao BE va CF của tam giaic cắt nhau tai H. Kẻ đường kính AK của đường tròn(O;R),gọi là trung điểm của BC.
a,Chứng minh AH=2.I
b, Biết góc BAC=60 độ ,tính độ dài dây BC theo R
2,Cho tam giác ABC(góc A=90 độ),BC=a. Gọi bán kính của đường tròn nội tiếp tam giác ABC là r. Chứng minh rằng : \(\frac{r}{a}\le\frac{\sqrt{2}-1}{2}\)