Cho tam giác ABC vuông tại A ( AB<AC ), gọi M là trung điểm của BC, vẽ MH vuông góc với AB.
a) Chứng minh H là trung điểm của AB.
b) Gọi K là trung điểm của AC. Chứng minh BHKM là hình bình hành.
c) Vẽ HI vuông góc BC tại I. Trên tia đối của tia AB lấy E sao cho BI = AE. Chứng minh CI =CE.
Cho tam giác ABC vuông tại A ( AB<AC ), gọi M là trung điểm của BC, vẽ MH vuông góc với AB.
a) Chứng minh H là trung điểm của AB.
b) Gọi K là trung điểm của AC. Chứng minh BHKM là hình bình hành.
c) Vẽ HI vuông góc BC tại I. Trên tia đối của tia AB lấy E sao cho BI = AE. Chứng minh CI =CE.
Cho tam giác ABC vuông tại A ( AB<AC ), gọi M là trung điểm của BC, vẽ MH vuông góc với AB.
a) Chứng minh H là trung điểm của AB.
b) Gọi K là trung điểm của AC. Chứng minh BHKM là hình bình hành.
c) Vẽ HI vuông góc BC tại I. Trên tia đối của tia AB lấy E sao cho BI = AE. Chứng minh CI =CE.
giải dum : cho hinh thang vuông ABCD có góc A=góc D= 90 độ , AB=AD= 1/2CD . Gọi E là trung điểm của CD
a) tứ giác ABCD là hình gì ? vì sao?
b) tứ giác ABED là hình gì ? vì sao?
c) gọi m là giao điểm của AC và BE , K là giao điểm của AE và DM, Ola2 giao điểm 2 đường chéo hình vuong ABED . Kẻ DH vuông góc với AC cắt AE tại i . Chứng minh BD là tia phân giác của góc IDK .
d) Chứng minh Bidk là hình thoi
Cho tam giác ABC cân tại A, đường trung tuyến AH và đường cao BQ. Gọi M, N lần lượt là trung điểm AB, AC. O là giao điểm của MN và AH, CO cắt AB tại K. Gọi D là điểm đối xứng của H qua M.
a) Tam giác PQH là tam giác gì? Vì sao?
b) Cm: AB = 3AK
c) Gọi E là điểm đối xứng của A qua H. BF va CP là hai đường cao của tam giác BCE. Cm: tam giác FBQ là tam giác vuông.
d) HJ vuông góc AB tại J. Trên tia đối của tia HJ lấy G sao cho HG = AB. Cm: PG là tia phân giác của góc APB.
Cho tam giác ABC có M là trung điểm của BC, trên tia đối cuả tia MA lấy điểm E sao cho MA bằng ME chứng minh rằng: a: AC bằng EB và AC song song vs BE. b: gọi I là một điểm nằm trên AC, K là một điểm trên EB sao cho AI bằng EK. chứng minh: I, M, K thẳng hàng. c: từ E kẻ EH vuông góc BC biết góc HBE bằng 50 độ, góc MEB bằng 25 độ. Tính góc HEM, và góc BEM
Cho tứ giác ABCD, E là giao điểm của các đường thẳng AB và CD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của các góc E và F cắt nhau tại I. Chứng minh rằng
a, Nếu góc BAD=130 độ, góc BCD=50 độ thì IE vuông góc với IF
b, Góc EIF bằng nửa tổng của một trong 2 cặp góc đối của tứ giác ABCD
Cho tam giác ABC cân tại A, đường trung tuyến AH và đường cao BQ. Gọi M, N lần lượt là trung điểm AB, AC. O là giao điểm của MN và AH, CO cắt AB tại K. Gọi D là điểm đối xứng của H qua M.
a) Tam giác PQH là tam giác gì? Vì sao?
b) Cm: AB = 3AK
c) Gọi E là điểm đối xứng của A qua H. BF va CP là hai đường cao của tam giác BCE. Cm: tam giác FBQ là tam giác vuông.
d) HJ vuông góc AB tại J. Trên tia đối của tia HJ lấy G sao cho HG = AB. Cm: PG là tia phân giác của góc APB.
Giải giúp với. Ngày mai phải thi rồi. Cảm ơn.
Cho tam giác ABC cân tại A, đường cao AD. Kẻ DH vuông góc với AC. Gọi I là trung điểm của DH, Mlaf trung điểm của HC. Chứng minh AI vuông góc với DM