Ta có: \(\widehat{ABC}=180^o-\left(70^o+50^o\right)=180^0-120^o=60^o\)
\(\Rightarrow\widehat{ACM}=\widehat{BCM}=30^o\)
\(\Rightarrow\widehat{BMN}=\widehat{BAC}+\widehat{MCA}=100^o\)
\(\Rightarrow\widehat{BMN}=180^o-\widehat{BMN}-\widehat{MBN}=40^o\)
\(\Rightarrow\widehat{BMN}=\widehat{MBN}\)
Kẻ \(MH\perp BC\)
\(\Rightarrow MK=\frac{1}{2}BN\)
\(\Delta MKB=\Delta BHM\left(ch-gn\right)\)( tự chứng minh )
\(\Rightarrow BK=MH\Rightarrow MC=BN\)hay \(BN=MC\)
Vậy BN = MC ( đpcm )
sao 2 tam giác đó bằng nhau được ???
vẽ hình ra đi
Ta có: ˆABC=180o−(70o+50o)=1800−120o=60oABC^=180o−(70o+50o)=1800−120o=60o
⇒ˆACM=ˆBCM=30o⇒ACM^=BCM^=30o
⇒ˆBMN=ˆBAC+ˆMCA=100o⇒BMN^=BAC^+MCA^=100o
⇒ˆBMN=180o−ˆBMN−ˆMBN=40o⇒BMN^=180o−BMN^−MBN^=40o
⇒ˆBMN=ˆMBN⇒BMN^=MBN^
Kẻ MH⊥BCMH⊥BC
⇒MK=12BN⇒MK=12BN
ΔMKB=ΔBHM(ch−gn)ΔMKB=ΔBHM(ch−gn)( tự chứng minh )
⇒BK=MH⇒MC=BN⇒BK=MH⇒MC=BNhay BN=MCBN=MC
Vậy BN = MC ( đpcm )