Cho tam giác ABC có góc A tù. Ở miền ngoài tam giác vẽ các tam giác vuông cân BAD, CAE (đỉnh A). Đường cao AH cắt cạnh DE tại M. Chứng minh MD=ME
Cho \(\Delta ABC\)có \(\widehat{A}\)tù. Ở miền ngoài tam giác, vẽ các tam giác vuông cân \(BAD,CAE\)( đỉnh \(A\)). Đường cao \(AH\)cắt cạnh \(DE\)tại \(M\). Chứng minh \(MD=ME\)
Cho \(\Delta ABC\)có \(\widehat{A}\)tù. Ở miền ngoài tam giác, vẽ các tam giác vuông cân \(BAD\), \(CAE\)( đỉnh \(A\)). Đường cao \(AH\)cắt cạnh \(DE\)tại \(M\). Chứng minh \(MD=ME\)
Cho tam giác ABC vuông tại A. Vẽ ở phía ngoài tam giác ấy các tam giác BAD, CAE vuông cân tại A. Vẽ AH vuông góc với BC, đường thẳng HA cắt DE ở K. Chứng minh rằng K là trung điểm của DE
Cho tam giác ABC. Vẽ ở phía ngoài tam giác ấy các tam giác BAD, CAE vuông cân tại A. Vẽ AH vuông góc với BC, đường thẳng HA cắt DE ở K. Chứng minh rằng K là trung điểm của DE
Cho tam giác ABC vuông ở A vẽ phía ngoài tam giác ấy các tam giác đều BAD và CAE vuông cân tại A.Vẽ AH vuông góc với BC,AH cắt DE ở K. Cm:K là trung điểm DE
GIÚP MÌNH NHÉ MỌI NGƯỜI, BÀI NÀO BIẾT GIÚP MÌNH TRƯỚC CŨNG ĐƯỢC. CẢM ƠN RẤT NHIỀU!!! :"3
Bài 1: cho tam giác ABC có góc A tù. Ở miền ngoài tam giác vẽ tam giác vuông cân BAD, CAE, ( đỉnh A). Đường cao AH cắt DE tại M. Chứng minh MD=ME
Bài 2: cho tam giác ABC, góc BAC = 120độ, đường phân giác trong AD. Từ D hạ DE vuông góc AB, DF vuông góc AC.
a) Hãy cho nhận xét về tam giác DEF
b) qua C vẽ đường thẳng song song với AD, nó cắt đường thẳng AB tại M. Hãy cho nhận xét về tam giác ACM
c) Cho biết CM=a,CF=b. Tính AD (a>b)
Bài 3: cho tam giác ABC. Trên nửa mặt phẳng không chứa tia AC có bờ là đường thẳng AB, người ta vẽ AD vuông góc AB và AD=AB. Trên nửa mặt phẳng không chứa tia AB có bờ là đường thẳng AC, vẽ AE vuông góc góc AC và AE=AC. Gọi P,Q,M theo thứ tự là trung điểm của BD,CE và BC. Chứng minh rằng:
a) BE=CD và BE vuông góc CD
b) PQM là tam giác vuông cân
bài 4: trên cạnh bên AB của tam giác ABC cân, người ta lấy điểm D, trên tia đối tia CA lấy điểm E sao cho BD=CE . DE cắt BC ở F. Chứng minh F là trung điểm của DE
Cho tam giác ABC có góc A nhọn. Về phía ngoài của tam giác ABC vẽ tam giác BAD vuông cân tại A, tam giác CAE vuông cân tại A. CM:
a) DC = BE; DC vuông góc với BE
b) BD2 + CE2 = BC2 + DE2
c) Đường thẳng qua A vuông góc với DE cắt BC tại K. Chứng minh K là trung điểm của BC\
HELP ME
Cho tam giác ABC có ba góc nhọn, đường cao AH. Ở miền ngoài của tam giác ABC vẽ các tam giác vuông cân ABE và tam giác ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a. Chứng minh rằng: EM + HC = NH
b. Chứng minh rằng: EN // FM