a)Trong một tam giác cân, đường trung trực ứng với cạnh đáy cũng đồng thời là đường cao của tam giác đó
Suy ra \(AM\perp BC\) tại M mà \(xy//BC\) nên \(xy\perp AM\) (đpcm)
b) Trong một tam giác cân, đường trung trực ứng với cạnh đáy cũng đồng thời là đường phân giác của tam giác đó
Suy ra \(\widehat{MAB}=\dfrac{\widehat{A}}{2}< 45^0\)
Ta có \(\widehat{B}=90-\widehat{MAB}>45^0\)
Suy ra \(\widehat{B}>\widehat{MAB}\)
Xét tam giác AMB vuông tại M có:
AB là cạnh huyền, AM là cạnh góc vuông nên AB>AM
Cạnh AM đối diện với góc B, cạnh BM đối diện với góc MAB mà \(\widehat{B}>\widehat{MAB}\) nên AM>BM ( Theo quan hệ giữa góc và cạnh đối diện trong một tam giác)
Vậy BM<AM<AB
Tự kẻ hình. Luv