Cho tam giác ABC có góc A bằng 90 độ. Gọi D, M lần lượt là trung điểm của AB, BC trên tia đối của tia DC lấy điểm E sao cho DE = DC, trên tia đối của tia MA lấy điểm N sao cho AM = MN.
a) Chứng minh: tam giác BED =tam giácACD
b) Chứng minh: CN // AB
c) Chứng minh: Ba điểm E, B, N thẳng hàng.
Bài 5 Cho tam giác ABC có góc A bằng 900. Gọi D, M lần lượt là trung điểm của AB, BC trên tia đối của tia DC lấy điểm E sao cho DE = DC, trên tia đối của tia MA lấy điểm N sao cho AM = MN.
a) Chứng minh: =
b) Chứng minh: CN // AB
c) Chứng minh: Ba điểm E, B, N thẳng hàng
Cho tam giác ABC có A=90 độ . Trên tia đối tia AB lấy D sao cho AB=AD . Trên tia đối tia AC lấy E sao cho AC=AE .
a) Chứng minh tam giác ABC=tam giác ADE .
b) Chứng minhED=BC .
c) Gọi I là trung điểm DC . Chứng minh DI=1/2 BC .
d) Gọi N là giao điểm CA vad BI . Mlaf trung điểm BC . Chứng minh D,N,M thảng hàng .
mọi người giúp mình với . Cảm ơn nhiều
Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh:
a) DC= \(\frac{1}{2}\)AB và DC // AC
b) AD=MC
c) MN // BC và MN =\(\frac{1}{2}\)BC
Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:
a) DE=BC
b) BC\(\perp\)DE tại H
c) AN = AM và AN\(\perp\)AM
Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:
a) BN = CA
b) góc BAC + góc DAE = 180 độ
c) AM = \(\frac{1}{2}\)DE
Nhớ vẽ hình hộ mik nha :))
Cho tam giác ABC có góc A = 90°, Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Trên tia đối của tia AC lấy điểm E sao cho AC=AE
a, Chứng minh ∆ABC = ∆ ADE
b, chứng minh ED song song với BC
c, gọi I là trung điểm của DC. Chứng minh BC=2DI
d, gọi N là giao điểm của CA với BI và M là trung điểm của BC. Chứng minh 3 điểm D,N ,M thẳng hàng
Mong mọi người giúp đỡ
Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của cạnh BC, D là trung điểm của cạnh AC
a). Chứng minh rằng: ∆AMB = ∆AMC và AM ⊥ BC
b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng: ∆ADF = ∆CDE, từ đó suy ra: AF // CE
c) Từ C dựng đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh rằng ∆BAD = ∆ACG
d) Chứng minh rằng: AB = 2CG
cho tam giác ABC có 3 góc nhọn, D là trung điểm của AB. trên tia đối của tia DC lấy điểm M sao cho MD=DC a, tam giác MDA = tam giác CDB b, AM // BC c, gọi E là trung điểm của AC. trên tia đối của tia EB lấy điểm N sao cho EN=EB. chứng minh M,A,N thẳng hàng ai giải đúng mình like cho
Bài 1: Cho tam giác ABC vuông tại A, AB > AC. M là trung điểm của BC.
Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh rằng: AB = DC và AB // DC.
b) Chứng minh rằng:
Tam giác ABC=tam giác CDA
từ đó suy ra Am=BC trên 2
c) Trên tia đối của tia AC lấy điểm E sao cho AE=AC. Chứng minh rằng:
BE// AM.
d) Tìm điều kiện của tam giác ABC để AC bằng BC trên 2
e) Gọi O là trung điểm của AB. Chứng minh rằng: Ba điểm E, O, D thẳng
hàng.