Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Trúc Linh

Cho tam giác ABC có góc A = 90; AB < AC ; phân giác BE, E thuộc AC . Lấy điểm H thuộc cạnh BC sao cho BH = BA.
a) Chứng minh EH vuông góc với BC.
b) CM BE là đường trung trực của AH.
c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng Minh EK = EC.
d) CM AH // KC.
e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng.

Nguyễn Tân Vương
6 tháng 3 2022 lúc 19:41

HÌnh bạn tự vẽ nha

\(\text{a)Vì }BE\text{ là phân giác của }\Delta ABC:\)

\(\Rightarrow\widehat{ABE}=\widehat{EBH}\)

\(\text{Xét }\Delta ABE\text{ và }\Delta HBE\text{ có:}\)

\(BH=HA\left(gt\right)\)

\(BE\text{ chung}\)

\(\widehat{ABE}=\widehat{EBH}\left(cmt\right)\)

\(\Rightarrow\Delta ABE=\Delta HBE\left(c-g-c\right)\)

\(\Rightarrow\widehat{BAE}=\widehat{BHE}\text{(hai cạnh tương ứng)}\)

\(\text{Mà }\widehat{A}=90^0\left(gt\right)\)

\(\Rightarrow\widehat{H}=90^0\)

\(\Rightarrow EH\perp BC\)

\(\text{b)Vì }\Delta ABE=\Delta HBE\left(cmt\right)\)

\(\Rightarrow AE=EH\)

\(\Rightarrow\text{Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A (1)}\)

\(\text{Ta có:}BA=BH\left(gt\right)\)

\(\Rightarrow\text{Khoảng cách từ điểm B đến H bằng khoảng cách từ điểm B đến A (2)}\)

\(\text{Từ (1) và (2)}\)

\(\Rightarrow\text{BE là đường trung trực của AH}\)

\(\text{c)Vì }\widehat{A}=90^0\left(gt\right)\)

\(\Rightarrow AB\perp AC\)

\(\Rightarrow\widehat{EAK}=90^0\)

\(\text{Vì }EH\perp BC\left(cmt\right)\)

\(\Rightarrow\widehat{EHC}=90^0\)

\(\text{Xét }\Delta AEK\text{ và }\Delta HEC\text{ có:}\)

\(\text{AE = EH (cmt)}\)

\(\widehat{EAK}=\widehat{EHC}=90^0\)

\(\widehat{AEK}=\widehat{HEC}\text{(đối đỉnh)}\)

\(\Rightarrow\Delta AEK=\Delta HEC\left(g-c-g\right)\)

\(\Rightarrow EK=EC\text{(2 cạnh tương ứng)}\)

\(\text{d)Ta có:}BA=BH\left(gt\right)\)

\(\Rightarrow\Delta\text{BAH cân tại B}\)

\(\Rightarrow\widehat{BAH}=\dfrac{180^0-\widehat{ABH}}{2}\left(3\right)\)

\(\text{Vì }\Delta AEK=\Delta HEC\left(cmt\right)\)

\(\Rightarrow\text{AK = HC ( 2 cạnh tương ứng)}\)

\(\text{Ta có:}\text{AK = BA + AK}\)

\(\text{BC = BH + HC}\)

\(\text{Mà BA = BH ( gt )}\)

\(\text{AK = HC ( cmt)}\)

\(\Rightarrow\text{BK = BC}\)

\(\Rightarrow\Delta\text{BKC cân tại B}\)

\(\Rightarrow\widehat{BKC}=\dfrac{180^0-\widehat{KBC}}{2}\left(4\right)\)

\(\text{Từ (3) và (4)}\)

\(\Rightarrow\widehat{BAH}=\widehat{BKC}\)

\(\text{Mà chúng đồng vị}\)

\(\Rightarrow\text{AH // BC}\)

 

\(\text{Ta có:}\Delta\text{BKC cân tại B}\)

\(\text{M là trung điểm BC }\)

\(\Rightarrow\text{BM là đường trung tuyến đồng thời là đường phân giác của }\Delta BKC\)

\(\text{Có BK là đường phân giác của tam giác BKC (cmt)}\)

\(\Rightarrow\text{BK là đường phân giác của}\widehat{KBC}\)

\(\text{Mà BE cũng là đường phân giác của}\widehat{BAH}\)

\(\Rightarrow\text{BE trùng BK hay ba điểm B ; E ; K thẳng hàng}\)

 


Các câu hỏi tương tự
Nguyễn Thanh Mai
Xem chi tiết
Bùi Lan Hương
Xem chi tiết
Huy trần
Xem chi tiết
Huỳnh Thị Hồng Phúc
Xem chi tiết
dangtrungkhanh
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
LƯU THIÊN HƯƠNG
Xem chi tiết
Vũ Hà My
Xem chi tiết
ahihi
Xem chi tiết