Nối B với D,C với K
Xét \(\Delta KAD\) và \(\Delta KAC\) có chung chiều cao xuất phát từ K , đáy AD = \(\frac{1}{3}\) Đáy AC
Nên \(S_{KAD}\) = \(\frac{1}{3}.S_{KAC}\)
Xét \(\Delta BAD\) và \(\Delta BAC\) có chung chiều cao xuất phát từ B , đáy AD = \(\frac{1}{3}\)
Nên \(S_{BAD}=\frac{1}{3}.S_{BAC}\)
Do đó : \(S_{KAD}+S_{BAD}=\frac{1}{3}.S_{KAC}+\frac{1}{3}.S_{BAC}\)
Mà : \(S_{KBC}=S_{KAC}+S_{BAC}\) nên \(\frac{1}{3}.S_{KBC}=\frac{1}{3}.S_{KBC}=\frac{1}{3}.S_{KAC}+\frac{1}{3}.S_{BAC}\)
Nên : \(S_{KBD}=\frac{1}{3}.S_{KBC}\)
Ta có : \(S_{KBC}=2.S_{KBE}\)
Nên : \(S_{KBD}=\frac{2}{3}.S_{KBE}\)
Nên : \(S_{EBD}=\frac{1}{3}.S_{KBE}\)
Mà : \(S_{EBD}=\frac{1}{2}.S_{BDC}=\frac{1}{2}.\left(\frac{2}{3}.S_{ABC}\right)=\frac{1}{3}.180=60\)
Vậy : \(S_{KBE}=3.S_{EBD}=180\)
\(S_{ABED}=S_{ABC}-S_{DEC}=180-60=120\)
Vậy : \(S_{AKD}=S_{KBE}-S_{ABED}=180-120=60cm^2\)