Cho tam giác ABC với độ dài 3 cạnh là a,b,c và diện tích S. Chứng minh S ≤ 1 / 16 ( 3a^2 + 2 b^2 + 2 c^2 )
cho tam giác ABC có một cạnh bằng 60 cm và chu vi bằng 160cm . Tìm độ dài hai cạnh còn lại để tam giác ABC có diện tích lớn nhất(cho biết diện tích tam giác có độ dài ba cạnh là a,b,c có thể tính bằng công thức sau:
S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)_{ }}\);p=(a+b+c):2
Cho một tam giác vuông với cạnh huyền có chiều dài c, độ dài hai cạnh góc vuông lần lượt là a và b \(\left(c>a,b>0\right)\). Từ a và b ta lập 2 hình chữ nhật đều có độ dài hai kích thước là a và b. Chứng minh rằng diện tích của hình vuông cạnh c luôn lớn hơn hoặc bằng tổng diện tích của 2 hình chữ nhật vừa lập được. Tam giác vuông ban đầu cần có thêm điều kiện gì để trường hợp bằng xảy ra?
cho tam giác ABC nhọn có 3 độ dài cạnh là a,b,c . Tính diện tích tam giác theo a,b,c
Cho abc là 3 độ dài các cạnh của một tam giác có chu vi là 1 thỏa mãn a/1-a + b/1-b + c/1-c = 3/2.Chứng minh tam giác đó là tam giác đều.Giúp tớ nhanh nhé!Cảm ơn nhiều!
1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.
2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.
3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.
4. Chứng minh rằng : Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác.
5. Cho a, b, c dương nhỏ hơn 1. Chứng minh rằng ít nhất một trong ba bất đẳng thức sau sai
a( 1 - b) > 1/4 ; b( 1- c) > 1/4 ; c( 1 - a ) > 1/4
6. Chứng minh rằng \(\sqrt{ }\)2 là số vô tỉ
7. Cho các số a, b, c thỏa mãn các điều kiện:
{ a+ b+ c> 0 (1)
{ ab + bc + ca > 0 (2)
{ abc > 0 ( 3)
CMR : cả ba số a, b, c đều dương
8. Chứng minh bằng phản chứng định lí sau : "Nếu tam giác ABC có các đường phân giác trong BE, CF bằng nhau, thì tam giác ABC cân".
9. Cho 7 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 100. CMR luôn tìm được 3 đoạn để có thể ghép thành 1 tam giác.
Cho tam giác ABC, gọi Rm là bán kính đường tròn ngoại tiếp với tam giác có độ dài ba cạnh lần lượt bằng độ dài của 3 đường trung tuyến của tam giác ABC. Chứng minh rằng: \(R_m\ge\frac{a^2+b^2+c^2}{2\left(a+b+c\right)}\)
cho abc là độ dài 3 cạnh tam giác chứng minh a(b-c)^2 + b(c-a)^2 + c(a+b)^2 > a^3 + b^3 + c^3
Cho a,b,c là các cạnh của tam giác vuông , h là độ daif đường cao ứng với cạnh huyền a . Chứng minh tam giác có độ dài 3 canh a+h , b+c và h là độ dài 3 cạnh tam giấc vuông.
Câu3 (2 điểm):
a) Cho a, b, c là độ dài ba cạnh của tam giác có chu vi bằng 2.
Chứng minh: (a + b + c)^2 - (a^2 + b^2 + c^2) - 2abc > 2
b) Chứng minh nếu a, b, c và a', b', c' là độ dài các cạnh của hai tam giác
đồng dạng thì: aa' + bb' + cc' = (a + b + c) (a' + b' + c')