Gọi $S_{ADE}$ là diện tích tam giác ADE.
Ta có thể tính diện tích tam giác ADE bằng cách sử dụng công thức diện tích của tam giác:
$$S_{ADE} = \frac{1}{2} \times AD \times AE \times \sin(\widehat{DAE})$$
Tuy nhiên, để tính được $\sin(\widehat{DAE})$, ta cần biết giá trị của góc $\widehat{DAE}$.
Ta có thể tính được giá trị của góc $\widehat{DAE}$ bằng cách sử dụng định lí cosin trong tam giác ADE:
$$DE^2 = AD^2 + AE^2 - 2 \times AD \times AE \times \cos(\widehat{DAE})$$
$$\Leftrightarrow \cos(\widehat{DAE}) = \frac{AD^2 + AE^2 - DE^2}{2 \times AD \times AE}$$
Thay các giá trị đã biết vào ta được:
$$\cos(\widehat{DAE}) = \frac{(2AB)^2 + (3AC)^2 - DE^2}{2 \times 2AB \times 3AC} = \frac{13}{12}$$
Do đó:
$$\sin(\widehat{DAE}) = \sqrt{1 - \cos^2(\widehat{DAE})} = \frac{\sqrt{119}}{12}$$
Tiếp theo, thay các giá trị đã biết vào công thức diện tích của tam giác ADE, ta được:
$$S_{ADE} = \frac{1}{2} \times AD \times AE \times \sin(\widehat{DAE}) = \frac{1}{2} \times 2AB \times 3AC \times \frac{\sqrt{119}}{12} = \frac{\sqrt{119}}{4} \text{cm}^2$$
Vậy diện tích tam giác ADE là $\frac{\sqrt{119}}{4}$ cm$^2$.