Tam giác DBA đồng dạng với tam giác ABC vì có
+) AB/BD= BC/AB=2
+) Dóc B chung kẹp giữa các cạnh tương ứng
--> AC/AD= BC/BA= 2
--> AC= 2AD
hc tốt
trả lời
HM=AD ( H là tđ AB) mà HM=1/2 AC( HM là đường trung bình tg ABC)
=>AD=1/2AC
hc tốt
Tam giác DBA đồng dạng với tam giác ABC vì có
+) AB/BD= BC/AB=2
+) Dóc B chung kẹp giữa các cạnh tương ứng
--> AC/AD= BC/BA= 2
--> AC= 2AD
hc tốt
trả lời
HM=AD ( H là tđ AB) mà HM=1/2 AC( HM là đường trung bình tg ABC)
=>AD=1/2AC
hc tốt
cho tam giác ABC, gọi D, E, F lần lượt là trung điểm của BC, AC, AB và M, N là các điểm trên BC sao cho BM = MN = NC. Gọi P là giao điểm của AM và BE, Q là giao điểm của AN và CF. CMR:
a, F, P, D thẳng hàng
cho tam giác ABC, gọi D, E, F lần lượt là trung điểm của BC, AC, AB và M, N là các điểm trên BC sao cho BM = MN = NC. Gọi P là giao điểm của AM và BE, Q là giao điểm của AN và CF. CMR:
a, F, P, D thẳng hàng
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
Cho tam giác ABC có BC=6cm. Trên BC lấy M,N sao cho BM=MN=NC. Gọi D,E lần lượt là trung điểm AC, AB. Gọi P là giao điểm của AM và BD. Gọi Q là giao điểm AN và CE. Tính PQ.
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho tam giác ABC có BC = 16 cm. Gọi D và E lần lượt là trung điểm của AB và AC. Gọi M và N lần lượt là trung điểm của BD và EC. Tính MN?
A. 9cm
B. 8cm
C. 10cm
D. 12cm
Giải giúp mik vs ạ
Thank you ♥️
Cho tam giác ABC có AB = 12cm, AC = 16 cm, BC = 20 cm. 1. Tam giác ABC là tam giác gì? 2. Lấy M, N lần lượt trên AB, AC sao cho AM = 3cm, AN = 4cm. CMR: MN // BC 3. Gọi I là trung điểm BC. G là giao điểm của AI và MN. CMR: G là trung điểm MN