cái bài mình bấm sai đấy không phải bài 7 đâu
cái bài mình bấm sai đấy không phải bài 7 đâu
Cho tam giác ABC (AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC.
a) Chứng minh :AD vuông góc BCvà AH.AD=AE.AC
b) Chứng minh : góc EOC = góc EFD
Cho ∆ABC có 3 góc nhọn (AB < AC) nội tiếp trong đường tròn (O) , hai đường cao BF và CE cắt nhau tại H
a/ Chứng minh 4 điểm B, E, F,C cùng nằm trên một đường tròn . Xác định tâm I của đường tròn đó
b/ Tia AH cắt (O) tại M và vẽ đường kính AD của đường tròn (O) . Chứng minh tứ giác BCDM là hình thang cân
c/ Chứng minh H, I, D thẳng hàng
d/ AD cắt EF tại K . Chứng minh AD vuông EF
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao AM và CN của tam giác ABC cắt nhau tại H. Gọi D và E là giao điểm thứ hai của tia AM và tia CN vs đườg tròn(O).chứng minh: a. Tứ giác BNHM nội tiếp b.BD=BE=BH c.ED//MN
cho tam giác ABC cân tại A (A<90), hai đường cao BD và CE cắt nhau tại H.
a. Chứng minh bốn điểm A,D,H,E cùng thuộc đường tròn, xác định tâm Ovaf vẽ đường tròn này.
b. Gọi K là giao điểm cảu AO và BC, Chứng minh KD là tiếp tuyến của đường tròn (O)
Cho đường tròn (o) có hai đường kính AC và BD vuông góc với nhau. Một điểm M bất kì trên cung nhỏ AB (M không trùng với A), đường thẳng MD cắt AC tại E và cắt đường thẳng BC tại F.
1. Chứng minh bốn điểm : B,M,E,O cùng thuộc một đường tròn
2. Chứng minh EF.MD= AD.FC
3. Điểm M ở vị trí nào trên cung AB thì tâm đường tròn ngoại tiếp △AME gần tâm O nhất
Cho tam giác ABC có ba góc nhọn. Đường cao BD và Ck cắt nhau tại H.
a)Chứng minh tứ giác ADHK nội tiếp được trong một đường tròn
b)Chứng minh tam giác AKD và tam giác ADB đồng dạng.
c)Kẻ tiếp tuyến Dx tại của đường tròn tâm O đường kính BC cắt AH tại M. Chứng minh là M trung điểm của AH.
Bài tập 2: Cho AABC nhọn nội tiếp đường tròn (O; R). Vẽ hai đường cao BE và CF của tam giác cát nhau tại I. a/ Chứng minh tứ giác AEIF nội tiếp. b/ Hai đường thẳng BE và CF cắt đường tròn lần lượt tại P và Q. Chứng minh BPQ = BCQ,
Cho tam giác ABC, 2 đường cao AI và BK cắt nhau tại H. Gọi D là điểm đối xứng của H qua I. Vẽ CE vuông góc BD tại E. Gọi F là giao điểm của AC và BE. Vẽ FN vuông góc BC tại N. Chứng minh: a. Tứ giác AKIB nội tiếp b. Tam giác BHC = tam giác BDC c. CK = CE d. Ba đường thẳng BK, CE, FN đồng quy.
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn tâm O vẽ các đường cao AI,BM,CE cắt nhau tại H
a/chứng minh: tứ giác BEMC nội tiếp
b /xác định các tứ giác nội tiếp còn lại
c/ vẽ đường kính AK. Chứng minh: AB.AC=AI.AK