Cho tam giác ABC có ba góc nhọn, nội tiếp trong đường tròn tâm O đường kính AD. Gọi H là trực tâm của tam giác ABC, E là một điểm trên cung BC không chứa điểm A. 1. Chứng minh rằng tứ giác BHCD là hình bình hành. 2. Gọi P và Q lần lượt là các điểm đối xứng của E qua các đường thẳng AB và AC. Chứng minh rằng 3 điểm P, H, Q thẳng hàng. 3. Tìm vị trí của điểm E để PQ có độ dài lớn nhất.
sorry
mình mới học lớp 5 nên chắc ko giải được bài này