cho tam giác ABC có các góc đều nhọn. A=45 độ. vẽ các đương cao BD và Ce của tam giác ABC. gọi H là giao điểm của BD và CE
a/ chứng minh tứ giác ADHE nội tiếp
b/ chứng minh HD=DC
c/ gọi o là tâm đường tròn ngoại tiếp tam giác ABC. chưng minh OA vuong góc với DE
Cho tam giác ABC có AB nhỏ hơn AC và góc B AC bằng 60 độ nội tiếp đường tròn tâm O Vẽ đường cao BN và CM của tam giác ABC Vẽ đường kính BD của đường tròn tâm O vẽ ch vuông góc với BD Chứng minh a năm điểm b m n c cùng nằm trên một đường tròn C Chứng minh góc B Chứng minh góc A bằng góc D B C và chứng minh MH = NC
Cho tam giác ABC có ba góc đều nhọn, góc BAC = 45 độ. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Các đường cao BD, CE (D thuộc cạnh AC, E thuộc cạnh AB) cắt nhau tại H.
a) Tính tỉ số \(\frac{DE}{BC}\)
b) Chứng minh OA vuông góc với DE
Cho tam giác abc có các góc nhọn nội tiếp đường tròn (o). Hai đường cao Bd và CE cắt nhau tại H. a) Chứng minh: Các tứ giác ADHE, BEDC nội tiếp. b) Chứng minh: Góc EAH = Góc ECB c) Từ A kẻ tiếp tuyến xy với đường tròn. Chứng minh: xy//DE
cho tam giác MAB có 3 góc nhọn nội tiếp đường tròn O. Vẽ MH vuông gócc với AB tại H, HD vuông góc với AM tại D, HC vuông góc với MB tại C.
1. chứng minh tứ giác MDHC là tứ giác nội tiếp đường tròn
2. chứng minh góc MDC = góc MHB
3. Chứng minh MO vuông góc với CD
Giúp tôi câu 3 mọi người ơi.
Bài 2: Cho tam giác ABC có các góc đều nhọn góc A = 45 độ. Vẽ các đường cao BD và CE của tam giác ABC. Gọi H là giao điển của BD và CE.
1 chứng minh tứ giác AHDE là tứ giác nội tiếp
2. chứng minh HD = DC
3. Tính tỷ số DE/BC
giúp tôi ý 3
Cho tam giác ABC có 3 góc nhọn, góc C=50° nội tiếp đường tròn (O; 2cm). hai đường cao BD và CE cắt mhau tại H. a) Chứng minh tứ giác ADHE nội tiếp. b) tính độ dài cung nhỏ AB. c) chứng minh góc EBD = góc ECD
cho tam giác abc có ba góc nhọn (ab<ac) nội tiếp đường tròn o .Các đường cao bd ce của tam giác cắt nhau tại h a) chúng minh bedc nội tiếp b)chứng minh ae.ab=ad.ac c)đường tròn đường kính ah cắt đường tròn (o,r) tại f. chứng minh de af bc đồng quy tại 1 điểm MÌNH CẦN GẤP PHẦN C
Cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp tronh đường tròn (O,R). Vẽ đường cao AH của tam giác ABC, đường kính AD của đường tròn (O). Gọi E,F là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. M là trung điểm của BC.
a) chứng minh các tứ giác ABHF và BMFO nội tiếp.
b)chứng minh HE//BD.
c) chứng minh SABC= AB.AC.BC trên 4R (SABC là diện tích tam giác ABC)
Bài 4 (3,5 điểm):
1. Cho tam giác abc có ba góc nhọn nội tiếp (O:R). Hạ các đường cao AD, BE của tam giác cắt nhau tại H và kẻ đường kính CF của (O)
a) Chứng minh các điểm A, E, D, B cùng nằm trên một đường tròn.
b) Chứng minh tứ giác AHBF là hình bình hành.
c) Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh rằng độ dài bán kính đường tròn ngoại tiếp tam giác CDE luôn không đổi.