Cho tam giác ABC có ba góc nhọn, điểm M là trung điểm của BC. Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB và AE = AB. Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC và AD = AC.
a) Chứng minh: BD = CE
b) Trên tia đối của tia MA lấy điểm N sao cho MN = MA.
Chứng minh: ∠BAC + ∠ACN = 180o
c) Gọi I là giao điểm của DE và AM. Tính tỉ số: \(\dfrac{AD^2+IE^2}{DI^2+AE^2}\)