Cho tam giác ABC không đều, BC là cạnh ngắn nhất. Đường tròn nội tiếp (I) của tam giác ABC theo thứ tự tiếp xúc với BC, CA, AB tại X, Y, Z. Gọi G là trọng tâm tam giác XYZ. Trên các tia BA, CA theo thứ tự lấy các điểm E, F sao cho BE = CF = BC. Chứng minh IG vuông góc với EF.
Cho tam giác ABC vuông tại A có BC=2AB=2a. Gọi D là trung điểm của BC. Vẽ tam giác DEF vuông tại D có E thuộc AC, F thuộc AB.
a, Tính số đo các góc tam giác DEF
b, Tính diện tích tam giác DEF theo DE
c, Khi diện tích tam giác DEF nhỏ nhất, tính độ dài cung EF của đường tròn ngoại tiếp tam giác DEF
Cho tam giác ABC vuông tại A có BC=2AB=2a. Gọi D là trung điểm của BC. Vẽ tam giác DEF vuông tại D có E thuộc AC, F thuộc AB.
a, Tính số đo các góc tam giác DEF
b, Tính diện tích tam giác DEF theo DE
c, Khi diện tích tam giác DEF nhỏ nhất, tính độ dài cung EF của đường tròn ngoại tiếp tam giác DEF
cho tam giac abc, goc a=40 do, goc b=30 do. Đường tròn (o) nội tiếp tam giác tiếp xúc với ab, ac, bc lần lượt tại d,e,f . Tính số đo cung ef nhỏ.
Một số bài toán hay về tâm nội tiếp:
Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.
Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.
Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.
Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.
Cho tam giác ABC có B A C ⏜ = 60 0 , A C = b , A B = c b > c . Đường kính EF của đường tròn ngoại tiếp tam giác ABC vuông góc với BC tại M (E thuộc cung lớn BC). Gọi I và J là chân đường vuông góc hạ từ E xuống các đường thẳng AB và AC. Gọi H và K là chân đường vuông góc hạ từ F xuống các đường thẳng AB và AC.
c) Tính độ dài cạnh BC và bán kính đường tròn ngoại tiếp tam giác ABC theo b, c.
Cho đường tròn (I) nội tiếp tam giác ABC, tiếp xúc với cạnh BC, CA, AB lần lượt tại D, E, F. Gọi M là giao điểm của BC và phân giác của góc BIC; N là giao điểm của EF và phân giác của góc EDF. Gọi P, Q theo thứ tự là giao điểm của AI với đường tròn (I) và EF( P thuộc cung EF không chứa điểm D). Chứng minh rằng
a, IM//ND
b, Tam giác IDM đồng dạng với tam giác PQN
c, 3 điểm A, M, N thẳng hàng
Cho tam giác đều ABC có diện tích S, nội tiếp đường tròn (O). Trên các cung AB, BC, CA lấy theo thứ tự các điểm A', B', C' sao cho các cung \(\widebat{AA'},\widebat{BB'},\widebat{CC'}\)đều có số đo bằng 30o. Tính diện tích phần chung của hai tam giác ABC và A'B'C'.
cho đường tròn (O;R) hai đường kính AB và CD vuông góc với nhau .Điểm E thuộc cung nhỏ BC, điểm F thuộc cung nhỏ BD sao cho EF=R căn 2.Dây AE cắt CD và BC theo thứ tự tại M và N .dây AF cắt CD và BD theo thứ tự tại P và Q a) Tiinhs số đo góc EAF b) chứng minh tứ giác MNQP nội tiếp c) chứng minh NQ// EF d) xác định vị trí của dây EF để diện tích tam giác BND đạt giá trị lớn nhất và tính giá trị đó theo R