Chọn B.
Áp dụng định lí cosin cho tam giác ta có:
a2 = b2 + c2 - 2bc.cosA = 36 + 64 - 2.6.8.cos600 = 52
do đó .
Chọn B.
Áp dụng định lí cosin cho tam giác ta có:
a2 = b2 + c2 - 2bc.cosA = 36 + 64 - 2.6.8.cos600 = 52
do đó .
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Cho tam giác ABC có góc B=60°, cạnh a=8, cạnh c=5. Tính độ dài cạnh b và diện tích tam giác ABC
Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?
A. 6 B.12 C.9 D.15
Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?
A.10 B.\(\sqrt{84}\) C.42 D.15
Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?
A.84 B.\(\sqrt{84}\) C.42 D.\(\sqrt{168}\)
Câu 4: Tam giác với ba cạnh là 5, 12, 13 có bán kính đường tròn ngoại tiếp bằng bao nhiu ?
A. 6 b. 8 C.\(\frac{13}{2}\)D.\(\frac{11}{2}\)
Câu 5. Tam giác với ba cạnh 3,4,5 có bán kính đường tròn nội tiếp tam giác đó bằng bao nhiu?
A.1 b.\(\sqrt{2}\) c. \(\sqrt{3}\) D.2
Câu 6: Cho tam giác ABC có a2 +b2 -c2 > 0. Khi đó góc C là ?
A. Góc C > 90 độ B. Góc C < 90 độ C.Góc C = 90 độ D. Không có kết luận
Dạ e xin chào các anh, chị. Em mong anh/chị hãy giúp e làm bài ở trên và chỉ em cách làm ra được đáp án đó. Em xin chân thành
cảm ơn rất nhiều . Vì em sắp thi rồi nên một số câu hỏi e vẫn không làm được . Mong a/c giúp e nhiệt tình nha ^-^
Cho tam giác ABC, biết
a) a = 12, b = 13, c = 15. Tính độ lớn góc A.
b) AB = 5, AC = 8, góc A = 60 độ. Tính cạnh BC.
Câu 1 cho tam giác abc biết a=6, b=4, c=8 độ dài đường cao từ đỉnh A là 3? Diện tích tam giác là?
Câu 2 cho tam giác biết a=4, b=5, góc C= 60. Diện tích tam giác là ?
Câu 3 cho tam giác abc có a2+b2-c2 >0. Khi đó góc C là ?
E mong các ac giúp e bài toán trên nha. E cảm ơn rất nhiều ^^
Cho tam giác ABC biết cạnh a bằng 12 cm ơ góc B bằng 60 độ và góc C bằng 40 độ Bộ tính a và các cạnh BC
Cho tam giác ABC, có góc B = 60 độ, góc C = 45 độ, BC = a.
a) Tính độ dài hai cạnh AB, AC.
b) Chứng minh cos 75 độ = \(\dfrac{\sqrt{6}-\sqrt{2}}{4}\)
Câu 6: Cho tàm giác ABC có A(1; - 1) ;B(2; 0) ;C(3; 5) a) Tìm tọa độ các vecto AB ,AC ,BC b) Tính độ dài các cạnh của tam giác ABC. Từ đó tính chu vi tam giác. c) Tìm tọa độ trung điểm các cạnh và tìm tọa độ trọng tâm của tam giác ABC. d) Tìm tọa độ điểm D để tứ giác ABCD là hnh bình hành e) Tọa độ chân đường cao xuất phát từ A của tam giác. Đ) Tính góc A?
Cho tam giác ABC, biết
a) góc A = 60 độ, góc B = 45 độ, b = 4. Tính cạnh b và c.
b) Góc A = 60 độ, a = 6. Tính R