Cho tam giác ABC có M nằm trong tam giác. Tia AM,BM,CM cắt BC,AC,AB tại D,E,F. Gọi H là giao điểm của BE và DF, K là giao điểm của CF và DE. Chứng minh AD,BK và CH đồng quy
Cho tam giác ABC có các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh: tam giác BEC đồng dạng tam giác ADC
b) Chứng minh: AH.HD = BH.HE
c) Chứng minh: tam giác CDE đồng dạng tam giác CAB
d) Gọi N là giao điểm của EF và AD. Chứng minh rằng FC là tia phân giác của góc DFE. Từ đó suy ra NH.AD = AN.HD
cho tam giác ABC cân tại A. vẽ các đường phân giác AD, BE, CF. đường thẳng đi qua A và song song BC cắt DF và DE tại M và N. a)chứng minh: FE//BC
b) cm : A là trung điểm MN
c) gọi I là giao 3 đường phân giác của tam giác ABC . Tính diện tích BIC . Biết AB=5 , BC=6
Cho tam giác nhọn ABC (AB<AC), các đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh rằng: Tam giác ABC đồng dạng tam giác ACF và AB.AF = AC.AE
b) Chứng minh rằng: góc AED = góc ACB
c) Gọi M là trung điểm của BC, K là giao điểm của đường thẳng EF và đường thẳng BC. Chứng minh BC2 = 4.MD.MK
trong tam giác ABC có M là điểm nằm trong tam giác, AM,BM,CM cắt cạnh BC,CA,AB lần lượt tại D,E,F gọi H là giao điểm của BE và DF, K là giao điểm của CF và DE. Chứng minh rằng BK,CH,AD đồng quy
cho tam giác nhọn ABC. các đường cao AD,BE,CF cắt nhau tại H. Gọi P là giao điến của BE và DF. CMR:
a) H là giao điểm của ba đường phân giác của tam giác DEF
b) HP/HE=BP/BE
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Cho tam giác ABC có AD, BE, CF là các đường phân giác của tam giác. Đường thẳng qua A song song với BC cắt DF, DE lần lượt tại M, N. Chứng minh rằng A là trung điểm của MN.
Giúp với nhá.... Plzzzzzzzzzzzz
Cho tam giác abc có ba góc nhọn các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng
a) ΔABE đồng dạng với ΔACF
b) HE.HB=HF.HC và ΔFHE đồng dạng với ΔBHC
c) H là giao điểm các đường phân giác của ΔDEF
d) \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
e) BH.BE+AH.AD=AB2
Giúp mình với mọi người!!!