Cho tam giác ABC có AC=2AB, M là trung điểm của BC và lấy D thuộc BC sao cho góc CAM bằng góc BAD. E là trung điểm của AC. Tính BD/BM.
Cho tam giác ABC có AC=2AB, M là trung điểm của BC và lấy D thuộc BC sao cho góc CAM bằng góc BAD. E là trung điểm của AC. Tính BD/BM.
Cho tam giác ABC có AC=2AB, M là trung điểm của BC và lấy D thuộc BC sao cho góc CAM bằng góc BAD. E là trung điểm của AC. Tính BD/BM.
Cho tam giác ABC vuông tại A, với AC<AB;AH là đường cao kẻ từ A.Các tiếp tuyến tại A và B với đ/tròn tâm O ngoại tiếp tam giác ABC cắt nhau tại M.Đoạn MO cắt AB tại E.Đoạn MC cắt đường cao AH tại F.Kéo dài CA cắt BM ở D.Đường thẳng BF cắt đường thẳng AM tại N.
a)C/M: OM//CD và M là trung điểm của BD
b)C/M: EF//BC
c)C/M: HA là tia p/g của góc MHN
d)Cho OM=BC=4cm.Tính chu vi tam giác ABC.
Thánh nào giải dùm đi
Cho tam giác ABC vuông tại A, với AC<AB;AH là đường cao kẻ từ A.Các tiếp tuyến tại A và B với đ/tròn tâm O ngoại tiếp tam giác ABC cắt nhau tại M.Đoạn MO cắt AB tại E.Đoạn MC cắt đường cao AH tại F.Kéo dài CA cắt BM ở D.Đường thẳng BF cắt đường thẳng AM tại N.
a)C/M: OM//CD và M là trung điểm của BD
b)C/M: EF//BC
c)C/M: HA là tia p/g của góc MHN
d)Cho OM=BC=4cm.Tính chu vi tam giác ABC
Cần giúp gấp
Cho tam giác ABC có AC=2AB, M là trung điểm của BC và lấy D thuộc BC sao cho góc CAM bằng góc BAD. E là trung điểm của AC. Tính BD/BM.
Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.
Cho tam giác ABC, gọi M là trung điểm cạnh BC ,đường phân giác ngoài của góc A cắt BC tại D. Đường tròn ngoại tiếp ADM cắt tia AB tại E và tia đối của tia AC tại F. Gọi N là trung điểm của EF. CM : MN//AD
Cho tam giác ABC , gọi M là trung điểm của cạnh BC , đường phân giác ngoài của góc A cắt đường thẳng BC tại D. Đường tròn ngoại tiếp tam giác ADM cắt tia AB tại E và tia đối của tia AC tại F.Gọi N là trung điểm của EF. Chứng minh MN // AD.