Cho tam giác ABC . Ở miền ngoài tam giác ABC , vẽ hai tam giác ABD và tam giác ACE là tam giác vuông tại A và có AD = AB , AE = AC . Gọi H là chân đường vuông góc kẻ từ A xuống BC và M là trung điểm của BC . Tia HA cắt DE tại K , tia MA cắt DE tại I . CMR :
a.AI vuông góc với DE
b.KD = KE
Cho tam giác ABC . Ở miền ngoài tam giác ABC , vẽ hai tam giác ABD và tam giác ACE là tam giác vuông tại A và có AD = AB , AE = AC . Gọi H là chân đường vuông góc kẻ từ A xuống BC và M là trung điểm của BC . Tia HA cắt DE tại K , tia MA cắt DE tại I . CMR :
a.AI vuông góc với DE
b.KD = KE
Cho tam giác ABC. Ở miền ngoài của tam giác ABC, vẽ hai tam giác ABD và ACE là những tam giác vuông tại A và có AD = AB, AE = AC. Gọi H là chân đường vuông góc kẻ từ A xuống BC và M là trung điểm của BC. Tia HA cắt DE tại K, tia MA cắt DE tại I. CMR:
a) AI _|_ DE.
b) KD = KE.
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
Cho tam giác ABC có AB^2+AC^2=BC^2. Gọi H là chân đường vuông góc kẻ từ A xuống BC. M và N lần lượt là hình chiếu vuông góc của H lên AB và AC. MN cắt AH tại I.
a. Tam giác MIH là tam giác gì?
b. Gọi O và K lần lượt là trung điểm của Bh và HC. Chứng minh: OM//KN
1)cho tam giác ABC vuông cân tại A. M là trung điểm của BC. G thuộc AB sao cgo AG=\(\frac{1}{3}\)AB, E là chân đường vuông góc hạ từ M xuống CG. MG và AC cắt nhau tại D. so sánh DE và BC
2) cho tam giác ABC vuông tại A và \(\widehat{BAC}\)= 60' , M thuộc BC sao cho AB+BM=AC+CM. tính\(\widehat{CAM}\)
3) cho tam giác ABC cân tại A , gọi E là điểm bất kì nằm giữa B và C , đường thẳng qua E vuông góc với AB và đường thẳng qua C vuông góc với AC cắt nhau tại D. gọi K là trung điểm của BE. tính \(\widehat{AKD}\)
4)cho tam giác ABC cân tại A. trên đường thẳng AC lấy điểm M tùy ý.đường thẳng vuông góc với BC qua M cắt BC tại H. gọi I là trung điểm của BM. tính\(\widehat{HAI}\)
Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm. điểm i nằm trong tam giác và cách đều 3 cạnh của tam giác ABC. Gọi M là chân đường vuông góc kẻ từ I đến BC. Tính BM.
Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm. điểm i nằm trong tam giác và cách đều 3 cạnh của tam giác ABC. Gọi M là chân đường vuông góc kẻ từ I đến BC. Tính BM.
Cho tam giác ABC có AB<AC. Phân giác trong của góc A cắt trung trực của BC tại I. Từ I hạ đường vuông góc xuống AB và AC lần lượt tại H và K. Chứng minh B nằm giữa A và H, K nằm giữa A và C?