Cho tam giác ABC có AB=AC, gọi M là trung điểm của cạnh BC. Chứng minh:
a) tam giác AMB=AMC
b) MAB=MAC và AM vuông góc với BC
c) Trên cạnh AB lấy điểm E, trên cạnh AC lấy điểm F sao cho AE=AF, EF cắt AM tại G. Chứng minh EF song song với BC
d) Trên tia EF lấy điểm K sao cho EK=BC. Gọi I là trung điểm của EC. Chứng minh 3 điểm B,I,K thẳng hàng
Đang ôn thi nên các bạn cố giúp mình với. Thanks nhìu
Xét ∆ AMB và ∆ AMC có :
AB = AC ( gt )
AM là cạnh chung
BM = MC ( M là trung điểm của cạnh BC )
\(\Rightarrow\)∆ AMB = ∆ AMC ( c - c - c )
b) Vì ∆ AMB = ∆ AMC ( cmt )
\(\Rightarrow\widehat{MAB}=\widehat{MAC}\)( 2 góc tương ứng )
Vì M là trung điểm của cạnh BC
\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)
Ta có :
\(\widehat{M}_1+\widehat{M_2}=180^o\)( 2 góc kề bù )
mà \(\widehat{M_1}=\widehat{M_2}\)
\(\Rightarrow\frac{180^o}{2}=90^o\)
\(\Rightarrow AM\perp BC\)
c) Xét ∆ AGE và ∆ AGF có :
AE = GF ( gt )
AG là cạnh chung
GE = GF ( gt )
\(\Rightarrow\) ∆ AGE = ∆ AGF ( c - c - c )
Vì ∆ AGE = ∆ AGF ( cmt )
\(\Rightarrow\widehat{AGE}=\widehat{AGF}\)( 2 góc tương ứng ) (1)
Mà AG nằm giữa cạnh EF
\(\Rightarrow AG\perp EF\)
Ta có :
\(\Rightarrow\hept{\begin{cases}AM\perp BC\\AM\perp EF\end{cases}}\)
Vì AM cùng vuông góc với BC,EF
\(\Rightarrow\)EF // BC
d) Mình chỉ biết vẽ hình câu d) chứ không biết làm =))))