Cho tam giác ABC có AB<AC, đường phân giác AD. Từ D vẽ đường thẳng a vuông góc với AD, a cắt AB, AC lần lượt tại M, N
So sánh BM và CN
Cho tam giác ABC nhọn, có AD là phân giác góc A. Trên AB lấy M, AC lấy N sao cho BM = CN. BN giao CM tại O. Từ O kẻ đường thẳng song song với AD cắt AB tại E và AC tại F. Chứng minh rằng AB = CF.
Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm. Đường phân giác AD. Kẻ DE⊥AB;DF⊥AC. Qua đỉnh A của tam giác ABC kẻ đường thẳng d không song song với BC, đường thẳng này cắt DE, DF kéo dài tại M, N. Chứng minh BM // CN
Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm. Đường phân giác AD. Kẻ DE⊥AB;DF⊥AC. Qua đỉnh A của tam giác ABC kẻ đường thẳng d không song song với BC, đường thẳng này cắt DE, DF kéo dài tại M, N. Chứng minh BM // CN
Cho tam giác ABC vuông tại A. Đường phân giác góc B cắt AC tại D, cho AB= 6cm, BC= 10cm
a) Tính AC, AD, CD
b) Từ D kẻ đường thẳng vuông góc với AC cắt BC tại K. Qua K kẻ đường thẳng vuông góc với BD tại E và cắt AB, AC lần lượt tại F,H. Chứng minh tam giác ABC đồng dạng tam giác DHK
C) Chứng minh BFDK: hình thoi
Cho tam giác ABC nhọn (AB < AC) có đường trung tuyến AM và phân giác trong AD. Qua điểm D kẻ đường thẳng vuông góc với AD, đường thẳng này cắt AB và AM lần lượt tại P và Q. Từ P kẻ 1 đường thẳng vuông góc với AB cắt tia AD ở điểm K.
CMR: KQ vuông góc với BC ?
1) Cho tam giác ABC phân giác AD. Qua D dựng đường thẳng song song với AB đường thẳng này cắt AC tại E. Qua E dựng đường thẳng song song với BC đường thẳng này cắt AB tại F. a) chứng minh AE=AF, b) Xác định hình dạng của tam giác ABC trong trường hợp E là trung điểm AC.
2) Cho hình bình hành ABCD. Từ B kẻ BH vuông góc với AC. Gọi M,N,P,Q lần lượt là trung điểm của AH,AB,NB,BC. a) MP=1/2 NC. b) chứng minh BM vuông góc với NQ.
3) cho tam giác ABC, các đường thẳng AP,AQ theo thứ tự vuông góc với phân giác trong và phân giác ngoài góc B. Các đoạn thẳng AR, AS vuông góc phân giác trong và phân giác ngoài góc C. a) chứng minh APBQ, ÁC là hình chữ nhật, b) Q,R,P,S thẳng hàng, c) QS=1/2 (AB+BC+AC)
cho tam giác ABC vuông tại A , đường phân giác AD
a) cm AD^2=AB*AC-DB*DC
b) kẻ DE vương góc với AB ,DFvuông góc với AC . đường thẳng qua D vuông góc với BC cắt AC,AC lần lượt tại M và N. gọi PQ lá TĐ của BN và CM. cm tam giác ADF cân và BND vuông cân
c) cm E,F,P,Q thẳng hàng
Cho tam giác ABC nhọn (AB < AC). Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS = NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng AI tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC