a) Xét tam giác ABC có:
\(AB^2+AC^2=8^2+6^2=100=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow AB\perp AC\)
Mà \(A\in\left(C;CA\right)\)
=> AB là tiếp tuyến đường tròn (C)
b) Ta có: AB là tiếp tuyến, C là tâm
=> BC cắt đường tròn
a) Xét tam giác ABC có:
\(AB^2+AC^2=8^2+6^2=100=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow AB\perp AC\)
Mà \(A\in\left(C;CA\right)\)
=> AB là tiếp tuyến đường tròn (C)
b) Ta có: AB là tiếp tuyến, C là tâm
=> BC cắt đường tròn
ai giúp em với ạ 5h em đi học thêm rồi !
-cho tam giác ABC vuông tại A, đường cao AH . Vẽ đường tròn (O), (I) ,(K) có các đường kính lần lượt là BC, CH, BH
a)Hãy xác định vị trí tương đối của (I),(O) và (K)
b) AC cắt đường tròn (I) tại D , AB cắt đường tròn (K) tại E. Chứng minh DE là tiếp tuyến chung của hai đường tròn (I) vả (K)
c)Xác định vị trí của H ở trên đường kính BC sao cho ED có độ dài lớn nhất
d)Tam giác ABC phải có thêm điều kiện gì để HB + HC + 2DE
Cho tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 crn. Vẽ đường tròn (B; BA). Chứng minh AC là tiếp tuyến của đường tròn (B)
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C (BC<AC). Vẽ đường thẳng qua O song song với BC cắt tiếp tuyến tại A ở M.
a) Chứng minh các tam giác ABC và AMO là các tam giác vuông
b) Chứng minh MC là tiếp tuyến của đường tròn (O)
c) Tiếp tuyến tại B của đường tròn (O) cắt tia AC tại N. Chứng minh \(ON\perp MB\)
cho đường tròn tâm O đường kính AB ,điểm m thuộc đọan AB,qua m vẽ đường thẳng d vuông góc với AB.Trên d lấy C sao cho C nằm ngoài đường tròn tâm O .Vẽ các tiếp tuyến CE CF với đường tròn tâm O.gọi h,k là giao điểm của CA,CB với đường tròn tâm O (H khác A,K khác B);I là giao điểm của AK và BH.
Chứng minh C M E F O thuộc 1 đường tròn
Chứng minh E F I thẳng hàng
Xác định vị trí điểm C để tâm đường tròn ngoại tiếp tam giác ABC nằm trên đường thẳng EF
Cho tam giác ABC vuông tại A có AB=3cm, AC=4cm. Vẽ đường tròn tâm A bán kính 2,8cm. Hãy xác định vị trí tương đối của đường thẳng BC và đường tròn (A;2,8)
Cho tam giác ABC có AB = 15 cm và AC= 8 cm và BC = 17 cm a) Chứng minh tam giác ABC vuôngb) Gọi AH là đường cao trong tam giác ABC, đường thẳng qua H vuông góc với AB cắt đường tròn (A;AH) tại D. Chứng minh BD là tiếp tuyến của đường tròn (A;AH)c) Tính HD.
Cho tam giác ABC có đường cao AH, nội tiếp trong đường tròn tâm O, đường kính BC. Gọi E,D lần lượt là hình chiếu của H trên cạnh AB, AC.
a/ CMR: tứ giác ADHE là hình chữ nhật
b/ Chứng minh AB.AE=AD.AC
c/ Gọi I,J lần lượt k là tâm các đường tròn ngoại tiếp tam giác CDH,BEH.Xác định vị trí tương đối giữa các đường tròn (i) và (J) và (O)
d/ CMR: ID là tiếp tuyến của đường tròn ngoại tiếp tam giác AEH.
Cho đường tròn (o) đường kính AB , điểm C nằm giữa A và O . Vẽ đường tròn (o') đường kính BC
a) xác định vị trí tương đối của đường tròn (o) và (o')
b) kẻ dây DE của đường tròn (o) vuông góc với AC tại trung điểm H của AC . Tứ giác ADCE là hình j ? Vì sao.
c) gọi K là giao điểm của DB và (o'). CMR 3 điểm E,C,K thẳng hàng
d) CMR: HK là tiếp tuyến của đường tròn (o)