Cho tam giác ABC gọi điểm D nằm trên cạnh BC sao cho BD=2DC, E là trung điểm của AD. Một đường thẳng bất kì qua E và cắt các cạnh AB AC , lần lượt tại M N. Tính tỉ số AB/AM+2AC/AN
Cho tam giác ABC nhọn(AB<AC) nội tiếp đường tròn nội tiếp đường tròn
tâm O
ĐỀ SỐ 2
Kẻ đường cao AH. Gọi M, N là hình chiếu vuông góc của H lên AB, AC. Kẻ NE
vuông góc với AH. Đường thẳng vuông góc với AC kẻ từ C cắt đường tròn tại I và
cắt tia AH tại D. Tia AH cắt đường tròn tại F
a) Chứng minh ABC+ACB=AIC và tứ giác DENC nội tiếp.
b) Chứng minh AM. AB = AN . AC.
c) Chứng minh tứ giác BFIC là hình thang cân.
d) Chứng minh tứ giác BMED nội tiếp .
Bài 5: (3,0 điểm) Cho tam giác ABC cân tại A, A là góc nhọn. M là trung điểm BC. Gọi D là điểm nằm giữa A và M.
a) Cho AC = 10cm, AM = 8cm. Tính độ dài cạnh BC
b) Vẽ đường thẳng d đi qua D và song song với BC, Vẽ đường thẳng đi qua B song song với AC và cắt d tại E, vẽ đường thẳng đi qua C song song với AB và cắt d tại F. Chứng minh tam giác AEF là tam giác
Cho tam giác nhọn ABC nội tiếp đường tròn (O) với AB<AC .Đường phân giác của góc B A C ^ cắt (O) tại điểm D khác A
Gọi M là trung điểm của AD và E là điểm đối xứng với D qua tâm O.
Giả sử đường tròn ngoại tiếp tam giác ABM cắt đoạn thẳng AC tại điểm F khácA
2). Chứng minh rằng È vuông góc với AC
Cho tam giác ABC có AB= 3, BC= 4, AC= 5. Điểm I thuộc AB sao cho 3AB= 4AI.
a) Qua A kẻ đường thẳng vuông góc với CI cắt BC tại M. Tính \(\frac{BM}{BC}\)
b) Gọi J laftrung điểm của AC, Klà giao điểm của BJ và CI. Tính \(\frac{BK}{KJ}\)
Cho tam giác nhọn ABC (AB<AC). Đường tròn (O) đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE. Tia AH cắt BC tại F,
a) Chứng minh AF vuông góc với BC và tứ giác BEHF nội tiếp
b) Gọi M là trung điểm của CH. Chứng minh tứ giác OMEF nội tiếp
c) DF cắt Ce tại N. Qua N kẻ đường thẳng vuông góc với CE cắt BC và BD lần lượt tại I và K. Chứng minh N là trung điểm của IK
Cho tam giác ABC nội tiếp đường tròn (O;R), AB < AC. Đường phân giác trong góc A cắt (O;R) tại M. Đường phân giác ngoài của góc A cắt (O;R) tại N và cắt đường thẳng BC tại E. Gọi F là giao điểm của MN với BC.
a) CMR: O là trung điểm MN
b) Tứ giác AEMF nội tiếp
Cho tam giác nhọn ABC nội tiếp đường tròn (O) với AB<AC. Đường phân giác của góc B A C ^ cắt (O) tại điểm D khác A
Gọi M là trung điểm của AD và E là điểm đối xứng với D qua tâm O.
Giả sử đường tròn ngoại tiếp tam giác ABM cắt đoạn thẳng AC tại điểm F khácA
1) Chứng minh rằng tam giác ĐM và tam giác BCF đồng dạng.
Cho tam giác ABC có D là chân đường phân giác trong, D thuộc BC. Đường thẳng qua D vuông góc với BC cắt phân giác ngoài tại đỉnh A ở I. Vẽ đường tròn (I;ID) cắt AB,AC lần lượt tại E,F. Gọi G là tâm ngoại tiếp tam giác AEF, K là giao điểm của đường đối trung xuất phát từ A của tam giác AEF với (AEF). Chứng minh rằng đường thẳng KG luôn đi qua điểm cố định khi A thay đổi trên cung lớn BC của (ABC).