Đáp án A
Tam giác ABC có: A B 2 + A C 2 = B C 2 nên tam giác BAC vuông tại A.
Ta có: AB ⊥ AC tại A và A thuộc đường tròn (B; BA).
Suy ra: AC là tiếp tuyến của (B; BA).
Đáp án A
Tam giác ABC có: A B 2 + A C 2 = B C 2 nên tam giác BAC vuông tại A.
Ta có: AB ⊥ AC tại A và A thuộc đường tròn (B; BA).
Suy ra: AC là tiếp tuyến của (B; BA).
Cho tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 crn. Vẽ đường tròn (B; BA). Chứng minh AC là tiếp tuyến của đường tròn (B)
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm.Khi đó:
A. AC là tiếp tuyến của đường tròn (B;6cm).
B. AB là tiếp tuyến của đường tròn (C;10cm).
C. BC là tiếp tuyến của đường tròn (A;6cm).
D. BC là tiếp tuyến của đường tròn (A;8cm).
Giải giúp mình các bài này với ạ!
1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm
2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.
Cho tam giác ABC vuông tại A có AB = 3 cm, BC = 6 cm.
a) Tính độ dài cạnh AC, số đo góc B và góc C
b) Vẽ (O) ngoại tiếp tam giác ABC. Đường cao AH của tam giác ABC cắt (O) tại D. Chứng minh BC là đường trung trực của AD
c) Tiếp tuyến tại D của (O) cắt BC tại E. Chứng minh EA là tiếp tuyến của (O)
d) Chứng minh EA^2 = EB.EC
Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm, đường cao AH.
a) Tính BC,AH;
b) Vẽ (A:AH), vẽ HI vuông góc với AC, HI cắt (A) tại M. Chứng minh: CM là tiếp tuyến của (A);
c) Vẽ đường kính MG của (A). Chứng minh BG là tiếp tuyến của (A)
cho đường tròn (O,r) và một điểm A nằm ngoài đường tròn (O). Vẽ tiếp thuyến AB của đường tròn (O)(B là tiếp điểm). Vẽ dây cung BC của (O) vuông góc với OA tại H
a) cm: H là trung điểm của BC
b) cm: AC là tiếp tuyến của (O)
c) với OA=2R. cm : tam giác ABC đều
d) trên tia đối của BC lấy điểm Q bất kì. Vẽ tiếp tuyến QD, QE của (O). cm ba điểm A,D,E thẳng hàng
Cho tam giác ABC vuông tại A, AB = 5cm, AC = 4cm
a) Giải tam giác ABC
b) Kẻ đường cao AH của tam giác ABC. Chứng minh : BC là tiếp tuyến của (A;AH)
c) Từ H kẻ HE vuông góc AB cắt (A) tại I và từ H kẻ HF vuông AC cắt (A) tại K. Chứng minh BI là tiếp tuyến (A)
Chứng minh BI là tiếp tuyến (A)
d) CM : A, I, K thẳng hàng
Giúp mình với, mình cảm ơn
Cho tam giác ABC nhọn ( AB < AC ) nội tiếp ( O ). Tiếp tuyến tại A cắt BC tại S. I là trung điểm của BC. Tia OI cắt ( O ) tại D. AD cắt BC tại E. Vẽ đường kính DF của (O). SF cắt (O) tại M. CM : SE là tiếp tuyến của đường tròn ngoại tiếp tam giác MEF.
Bài 4: Cho (O;R) đường kính BC. Lấy điểm A trên (O) sao cho AB = R
a. Tính số đo các góc A,B,C và cạnh AC theo R
b.Đường cao AH của tam giác ABC cắt (O) tại D. CM: tam giác ADC là tam giác đều
c. Tiếp tuyến tại D của (O) cắt đường thẳng BC tại E.CM EA là tiếp tuyến của (O)
d. CM: EB.CH= BH.EC
Cho vòng (O,R) đường kính AB, dây cung BC = R
a) Giải tam giác ABC
b) Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn (O) tại D. CM: OD là trung trực của đoạn thẳng AC
c) CM: DC là tiếp tuyến của (O)
d) Đường thẳng OD cắt đường tròn (O) tại I. CM: I là tâm đường tròn nội tiếp tam giác ADC