Tam giác ABC có AB = 24; AC = 32; BC = 40.
Trên cạnh AC lấy điểm M sao cho AM = 7. Chứng minh rằng:
a) Tam giác ABC vuông
b) Góc AMB = 2 góc C
cho tam giác ABC có AB = 24 , AC = 32 , BC = 40. trên cạnh AC lấy điểm M sao cho AM = 7
CMR:
a) tam giác ABC vuông
b) góc AMB = 2 lần góc C
Cho tam giác ABC có AB=24, BC=40, AC=32. Trên AC lấy điểm M sao cho AM=7. CMR
a, Tam giác ABC vuông
b Tính BM
cho tg ABC có AB = 24 cm, AC = 32 cm, BC = 40 cm. Trên AC lấy điểm M sao cho AM = 7 cm. CM:
a) tam giác ABC vuông
b) tam giác BMC cân
tam giác ABC có AB = 24 ; AC = 32 , BC = 40 . Trên canh AC lấy điểm M sao cho AM = 7. CMR :
a, tam giác ABC vuông
b, \(\widehat{AMB}=2\widehat{C}\)
Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ
a) Tính góc C.
b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.
Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.
a) Chứng minh tam giác AMB = tam giác AMC.
b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.
c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.
Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.
a) Chứng minh tam giác MAB = tam giác MDC.
b) Chứng minh rằng AB = CD và AB // CD.
Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.
a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.
b) Chứng minh rằng: AH // DE.
*Vẽ hình giúp mình*
tam giác ABC có AB = 24 ; AC = 32 , BC = 40 . Trên canh AC lấy điểm M sao cho AM = 7. CMR :
a, tam giác ABC vuông
b, AMB = 2C
Bài 1: Cho tam giác ABC vuông tại A, (AB < AC). D, E là các điểm thuộc AC, BC sao cho DE vuông góc với BC và DE=EB
a) Kẻ EH vuông góc với AB, EK vuông góc với AC. Chứng minh rằng tam giác EKD = tam giác DHB
b) Chứng minh AE là tia p/g \(\widehat{BAC}\)
Bài 2: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD (H thuộc AE). Chứng minh rằng:
a) BH = CK
b) Tam giác AHB = tam giác AKC
c) BC // HK
Bài 3: Cho tam giác ABC có AB = 24, AC = 32, BC = 40. Trên cạnh AC lấy điểm D sao cho AD = 7. Chứng minh rằng:
a) Tam giác ABC vuông
b) \(\widehat{AMB}\) = 2\(\widehat{C}\)
Cho tam giác ABC có AB = AC và AB > BC Gọi M là trung điểm của cạnh BC.
a. Chứng minh rằng tam giác ABM =tam giác ACM và AM là đường trung trực của BC.
b. Trên tia đối của tia MB, lấy điểm D sao cho MD = MA chứng minh AB//CD.
c. Trên nửa mặt phẳng có bờ chứa cạnh AC và không chứa điểm B ,kẻ tia Ax vuông góc AM. Trên tia Ax lấy điểm E sao cho AE = BC Chứng minh rằng D, C, E thẳng hàng