Cho tam giác ABC nhọn có trực tâm H. Gọi M,N lần lượt là chân đường cao hạ từ B,C của tam giác ABC. Lấy D thuộc BC( D khác B,C), E là giao điểm của đường tròn ngoại tiếp tam giác CDM và đường tròn ngoại tiếp tam giác BDN(E khác B). CMR: A,E,D thẳng hàng
Cho tam giác ABC nhọn có trực tâm H. Gọi M,N lần lượt là chân đường cao hạ từ B,C của tam giác ABC. Lấy D thuộc BC( D khác B,C), (O1) là đường tròn đi qua các điểm C, D, M và (O2) là đường tròn đi qua các điểm B, D, N. Gọi DQ là đường kính của đường tròn (O1), Dp là đường kính của đường tròn (O2) . CMR: P,H,Q thẳng hàng
Cho tam giác ABC nhọn có trực tâm H. Gọi M,N lần lượt là chân đường cao hạ từ B,C của tam giác ABC. Lấy D thuộc BC( D khác B,C), (O1) là đường tròn đi qua các điểm C, D, M và (O2) là đường tròn đi qua các điểm B, D, N. Gọi DQ là đường kính của đường tròn (O1), Dp là đường kính của đường tròn (O2) . CMR: P,H,Q thẳng hàng
Cho tam giác ABC có D,E,F lần lượt là trung điểm của BC,CA,AB. G,H,I lần lượt là chân đường cao hạ từ đỉnh A,B,C. Trực tâm tam giác ABC là S. J,K,L theo thứ tự là trung điểm SA,SB,SC. Chứng minh rằng: 9 Điểm D,E,F,G,H,I,L,K,J cùng thuộc đường tròn. (Gợi ý: đường tròn đường kính JD)
Một số bài toán hay về tâm nội tiếp:
Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.
Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.
Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.
Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.
Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.
Cho tam giác ABC vuông ở A, đường cao AH chia cạnh huyền BC thành 2 đoạn ; BH,CH có độ dài lần lượt là 4cm và 9cm . Gọi D và E lần lượt là hình chiếu của điểm H trên AB và AC .Tính a, DE
b, Cắt đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N . chứng minh M là trung điểm của BH, N là trung điểm của CH.
c, Tính diện tích tứ giác DEMN
Cho tam giác nhọn ABC có trực tâm H và góc BAC =60 độ. Gọi M,N,P lần lượt là chân đường cao hạ từ các đỉnh A,B,C của tam giác ABC và I là trung điểm của BC.
a) chứng minh tam giác NIP đều
b) Giả sử IA là phân giác của góc NIP. Tính số đo của góc BCP
1. Tam giác ABC vuông tại A. D thuộc AB, E thuộc AC, M,N,P,Q lần lượt là trung điểm DE, DC, BC, BE. Chứng minh M, N, P, Q thuộc 1 đường tròn.
2. Tam giác ABC đường cao BH, CK. Chứng minh
a) 4 điểm B, C, H, K thuộc 1 đường tròn
b) HK < BC
3. Cho đường tròn tâm O đường kính AB. CD cắt AB tại I. H, K là chân đường vuông góc kẻ từ A, B đến CD. Chứng minh CH = BK