Gọi O là trung điểm BC, J là trung điểm DE. Do tam giác BEC vuông tại E mà EO là trung tuyến ứng với cạnh huyền nên OE = OB = OC. Tương tự OD = OB = OC. Từ đó ta có OE = OD hay tam tam giác OED cân tại O.
Lại có J là trung điểm DE nên \(OJ\perp DE\). Vậy thì OJ // BI // CK. Mà O là trung điểm BC nên OJ là đường trung bình hình thang CBKI. Vậy thì JI = JK.
Ta có \(JI=JK\Rightarrow JI-JE=JK-JD\Rightarrow EI=DK\left(đpcm\right)\)
Bài này đợt nọ bọn em làm rồi :v Mà em không phải vớ vẩn đâu, mà cả 10 đứa đội tuyển lớp em đều nghĩ ra :|
Phúc thắc mắc gì hả em?