Cho tam giác ABC có 3 góc nhọn và H là trực tâm. Vẽ hình bình hành BHCD. Đường thẳng đi qua D song song với BC cắt AH tại E
1, chứng minh A,B,C,D,E cùng thuộc 1 đường tròn
2, chứng minh tam giác BAE= tam giác DAC
3, Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và M là trung điểm của BC, đường thẳng AM cắt OH tại G. Chứng minh G là trọng tâm của tam giác ABC
4, giả sử OD=a. Hãy tính độ dài đường tròn ngoại tiếp tam giác BHC theo a
HELP ME
a, HCDB là hbh (gt)
-> CH // BD; HB // CD
Vì H là trực tâm của Δ ABC (gt)
-> CH vuông với AB ; BH vuông với AC ; AH vuông với BC
-> AB vuông BD ; AC vuông CD
-> ^ABD=90*, ^ ACD=90*
Xét tứ giác ABCD có: ^ABD + ^ ACD = 180*
-> tứ giác ABCD nội tiếp
-> A, B, C, D cùng thuộc 1 đường tròn (1)
DE // BC (gt)
->AH vuông DE ( vì AH vuông BC )
-> ^AED = 90*
Xét tứ giác ABED có ^AED=^ABD=90*
-> B và E cùng nhìn AD dưới 1 góc 90*
-> ABED nội tiếp
-> A,B,E,D cùng thuộc 1 đường tròn (2)
Từ (1) và (2) -> A,B,C,D,E cùng thuộc một đường tròn
b) ABEDC nội tiếp
-> ^BAE = ^BDE (2 góc nội tiếp cùng chắn cung BE)
Và ^DAC = ^DBC (2 góc nội tiếp cùng chắn cung CD)
Mà ^DBC = ^BDE (2 góc sole trong)
-> ^BAE = ^CAD
OMG!!!!!!!!!!!!!!
em lên mạng hỏi à
lạy baba
câu c Vì BHCD là HBH nên H,M,D thẳng hàng
Tam giác AHD có OM là ĐTBình => AH = 2 OM
Và AH // OM
2 tam giác AHG và MOG có
góc agh =mgo(đ đ)
nên tam giác ahg đồng dạng mog
ah/mo=ag/mg
Hay AG = 2MG
Tam giác ABC có AM là trung tuyến; G thuộc AM
Do đó G là trọng tâm của tam giác ABC
tam giác bhc= tam giác bdc ( tính chất hình bình hành)
b,d,c nội tiếp (o)
Nên tam giác BHC cũng nội tiếp (K) có bán kính a
Do đó Chu vi(K) = 2pi.a( ĐVĐD)
hahaha
em lên mạng hỏi à
chị chưa kịp
chị định viết lên đây rồi copy lên mạng hihhiihhi
hahaha đùa ik
em mà vẽ đc hình chi chết liền
copy mạng thì ns luôn ik hihiih
câu b lạc lối rồi
chị làm ko ra
chắc chắn là làm sai