Cho đường tròn (O;R), dây BC cố định (BC<2R) và điểm A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại H.
a.CMR tứ giác ADHE nội tiếp.
b. Giả sử góc BAC=60°, hãy tính khoảng cách từ tâm O đến cạnh BC theo R
c.CMR đường thẳng kẻ qua A và vuông góc với DE luôn đi qua 1 điểm cố định.
1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR giao điểm hai đường chéo nằm trên 1 đường trong cố định
2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động
3. Cho (O,R) BC là dây cố định. A là 1 điểm di động trên (O,R). Lấy M đối xứng với C qua trung điểm I của AB. Hỏi M di động trên đường nào khi A di động
4. Cho A di chuyển trên (O,R) đường kính BC gọi M đối xứng với A qua B, H là hình chiếu của A trên BC, I là trung điểm HC
a. CMR M chuyển động trên (O,R) 1 đường thẳng tròn cố định
b. CMR tam giác AHM đồng dạng tam giác CIA
c. CMR MH vuông góc AI
d MH cắt (O) tại E và F đường thẳng AI cắt (O) tại G. CMR Tổng bình phương các cạnh của tứ giác AEGF ko đổi
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn O. Các đường cao AD,BE,CF cắt nhau tại H.Gọi I là trung điểm của BC.Nối A với I cắt OH tại G
a) tg BCEF nội tiếp
b) Tính EF nếu BÂC =60 độ và BC=20cm
c) C/m G là trọng tâm tam giác ABC
d) c/m rằng khi A chuyển động trên cung lớn BC sao cho tam giác BAC có 2 góc nhọn thì đường tòn ngoại tiếp tam giác DEF luôn đi qua 1 điểm cố định
Cho đường tròn (O;R), dây BC cố định (BC<2R) và điểm A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại H.
a.CMR tứ giác ADHE nội tiếp.
b. Giả sử góc BAC=60°, hãy tính khoảng cách từ tâm O đến cạnh BC theo R
c.CMR đường thẳng kẻ qua A và vuông góc với DE luôn đi qua 1 điểm cố định.
d. Phân giác góc ABD cắt CE tại M , cắt AC tại P. Phân giác góc ACE cắt BD tại N , cắt AB tại Q . Tứ giác MNPQ là hình gì ? Vì sao ?
A B C D E H D E Cho tam giác ABC nội tiếp O .BD, CE là 2 đường cao. BD cắt CE tại H và cắt O tại lần lượt D ,E .Chứng minh a BEDC nội tiếpb DE D E c OA vuông góc DEd BC cố định. Chứng minh khi A di động trên cung lớn BC sao cho tam giác ABC luôn là tam giác nhọn thì bán kính đtròn ngoại tiếp tam giác ADE ko đổi.
Cho (O;R) có dây BC cố định. Trên cung lớn BC lấy A sao cho tam giác ABC nhọn. Gọi H là giao điểm các đường cao BE và CF. Đường thẳng EF cắt BC tại K
a) C/m: AEHF nội tiếp
b) C/m: KB.KC=KF.KE
c) Đường thẳng AK cắt (O) tại M. C/m: MH vuông góc AK
d) C/m: Điểm M cố định khi A di chuyển trên cung lớn BC
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O . Các đường cao AD , BE , CF giao nhau tại H . I là trung điểm BC . AAAI giao OH tại G
1. Cm tứ gisc BCEF nội tiếp
2. Tính độ dài đoạn EF nếu góc BAC = 60 độ . BC = 20cm
3. Cm G là trọng tâm tam giác ABC
4. Khi A di động trên cung lớớn BC sao cho tam giác ABC nhọn . Cm đường tròn nội tiếp tam giác DEF luôn đi qua điểm cố định
Bài Tập
Cho ( O; R), dây BC cố định ( BC< 2R ) và điểm A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn . Các đường cao BD và CE của tam giác CE của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ADHE nội tiếp
b) Chứng minh rằng đường thẳng kẻ qua A và vuông góc với DE luôn đi qua một điểm cố định
c) Phân giác góc ABD cắt CE tại M , cắt AC tại P . Phân giác góc ACE cắt BD tại N , cắt AB tại Q . Tứ giác MNPQ là hình gì? Tại sao
Cho tam giác ABC có góc A=60 độ nội tiếp (O). Đường cao AH cắt (O) tại D. Đường cap BK cắt AH tại E
a) CMR: Góc BKH= Góc BCD
b) Tính góc BEC
c) BC cố định, A di động trên cung lớn BC. Hỏi tâm I của đường tròn nội tiếp tam giác ABC chuyển động trên đường nào?
d) CMR tam giác OIE cân