Cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. M là trung điểm của BC. Đường thẳng vuông góc với HM tại H cắt AB, AC tại P và Q.
a. Chứng minh tam giác AQH đồng dạng với tam giác BHM
b. Chứng minh PH/MH = AH/CM
c. Chứng minh H là trung điểm PQ
Cho tam giác ABC có 3 góc nhọn (AB<AC). kẻ đường cao BE,CF,AK cắt nhau ở H.
a)Tia EF cắt AK va BC lần lượt tại N và D. Chứng minh DE.FN=DF.NE
b) gọi O,I lần lượt là trung điểm BC và AH. Chứng minh ON vuông góc DI
c)kẻ HM vuông góc AD tại M. chứng minh O,H,M thẳng hàng
Câu 17. Cho tam giác ABC nhọn (AB<AC), đường cao BE và CF cắt nhau tại H. Qua C, D kẻ các đường thẳng vuông góc với AC, AD cắt nhau tại K.
a) Tứ giác BHCK là hình gì?
b) Gọi M là trung điểm của BC. Chứng minh H, M, K thẳng hàng.
c) Từ H kẻ HG vuông góc với BC (G thuộc BC).
Lấy I thuộc tia đối của tia GH. Chứng minh: BCKI là hình thang cân.
Cho tam giác ABC nhọn có AB > AC. Các đường cao AD,BE, CF cắt tại H.
a) chứng minh rằng ∆AFH~∆ADB
b) ∆ AFE~∆ABC và EH là tia phân giác của góc FED
c) gọi I là trung điểm của BC qua H kẻ đường thẳng vuông góc với HI đường thẳng này cắt AB tại M, cắt AC tại N . Chứng minh ∆ IMN cân
Cho tam giác nhọ ABC, các đường cao BE,CF cắt nhau tại H. Gọi M là trung điểm BC. Đường thẳng vuông góc với HM tại H cắt AB và AC
theo thứ tự P và Q.Chứng minh rằng
a)Tam giác AHP đồng dạng với tam giác CMH
b) H là trung điểm PQ
c) Trên các đoạn HB, HC lần lượt lấy các điểm I,K tùy ý sao cho HI=CK. Chứng minh đường trung trực của đoạn thẳng IK luôn đi qua 1 điểm cố định
cho tam giác abc (ab<ac) có 3 góc nhọn, đường cao ad,be,cf cắt nhau tại H. gọi i là trung điểm của bc qua H kẻ đường thằng vuông góc với hi, đường thẳng này cắt đường thẳng ab tại m và cắt đường thẳng ac tại n
Cho tam giác nhọn ABC có ba đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh: Tam giác ABE đồng dạng với tám giác ACF, từ đó suy ra : AB.AF = AC.AE
b) Chứng minh: DB.DC = DA.DH
c) Gọi I là trung điểm của BC. Đường thẳng vuông góc với IH tại H cắt AB và AC lần lượt tại M và N. Chứng minh: Tam giác AHN đồng dạng với tam giác BIH và H là trung điểm của MN.
Cho tam giác ABC nhọn có AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Từ B kẻ đường thẳng vuông góc với AB và từ C kẻ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại K.
a) Chứng minh BHCK là hình bình hành
b) Chứng minh H, M, K thẳng hàng
c) Chứng minh tam giác MEF là tam giác cân
cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H, từ H hạ HM vuông góc với EF tại M và HN vuông góc với ED tại N. gọi I;J;Q;K lần lượt là hình chiếu của F trên AC, AD, BE, BC. chứng minh I;J;Q;K thẳng hàng.