Xét tam giác ABC cân tại A có:
AD là phân giác của góc BAC (gt).
\(\Rightarrow\) AD là đường trung trực của BC (Tính chất tam giác cân).
Xét tam giác ABC cân tại A có:
AD là phân giác của góc BAC (gt).
\(\Rightarrow\) AD là đường trung trực của BC (Tính chất tam giác cân).
Cho tam giác ABC có AB=AC, tia phân giác của góc A cắt BC tại D. Từ D kẻ DE vuông góc với AB tại E và DF vuông góc với AC tại F. Chứng minh rằng: a) tam giác ADB= tam giác ADC. b)DE=DF. c) AD là đường trung trực của BC
Mng giải giúp vs ạ. Cảm ơn nhiều !
Cho tam giác ABC cân tại A. Tia phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc AB(E thuộc AB),kẻ DF vuông góc AC(F thuộc AC) chứng minh rằng:
a. DE=DF
b. tam giác BDE=tam giác CDF
c. AD là đường trung trực của BC
8cho tam giác abc có ab=ac . tia phân giác của góc a cắt bc tại d : a , chứng minh tam giác abd = tam giác adc và d là trung điểm của bc b, chứng minh ad là đường trung trực của bc . c kẻ de vuông góc với ab ( e thuộc ab) df vuông góc với ac ( f thuộc ac ) . chứng minh ef// bc . Giúp mình với
cho tam giác ABC cân tại A .gọi D là trung điểm BC, từ D kẻ DE vuông góc với AB,DF vuông góc với AC . Chứng minh rằng :
a)Tam giác ABD=tam giác ACD
b)AD vuông góc BC
c) cho AC= 10 cm ; BC=12cm.tính AD ?
d) chứng minh tam giác DEF cân
Cho tam giác ABC cân tại A, AD là tia phân giác của góc BAC( D thuộc BC).Từ D kẻ DE vuông góc với AB(E thuộc AB), DF vuông góc với AC( F thuộc AC )
a.CMR: AD là trung trực của EF
b.Trên tia đối của tia DE lấy G sao cho DE = DG.CMR:tam giác CEG là tam giác vuông
Cho tam giác ABC cân tại A, AD là tia phân giác của góc BAC( D thuộc BC).Từ D kẻ DE vuông góc với AB(E thuộc AB), DF vuông góc với AC( F thuộc AC )
a.CMR: AD là trung trực của EF
b.Trên tia đối của tia DE lấy G sao cho DE = DG.CMR:tam giác CEG là tam giác vuông
Cho tam giác ABC cân tại A. gọi D là trung điểm của BC. từ D kẻ DE vuông góc AB (E thuộc AB), DF vuông góc AC (E thuộc AC). Chứng minh rằng :
a/ ΔABD = ΔACD
b/ AD vuông góc với BC.
c/ tam giác EBD = tam giác FCD
d/ Cho AC = 10cm, BC = 12cm. tính AD.
Cho tam giác ABC cân tại A. D là trung điểm của BC. Kẻ DE vuông góc với AB tại E; DF vuông góc với AC tại F
Chứng minh
a)TG DEB= Tg DFC
b) Tg AED=Tg AFD
c)Ad là phân giác của BAC^
d) AD là trung trực của EF
e) EF song song với BC
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân