cho tam giác ABC cân tại A. trên tia đối của tia BA và CA lần lượt lấy hai điểm M và N sao cho BM=CN. Gọi I là giao điểm cảu MC và BN.
a) CMR MI=MN
b) Tia phân giác của AMC cắt AI tại O. CMR MO>\( {MC \over 2}\)
Cho tam giác ABC cân tại A. Trên tia đối của các tia BA và CA lấy lần lượt các điểm M và N sao cho BM = CN. Gọi I là giao điểm của MC và BN. Tia phân giác của góc AMC cắt AI tại O. Chứng minh rằng MO > MC/2 (Không cần vẽ hình)
Cho tam giác ABC đều . Trên tia đối của tia BA , CA lấy lần lượt các điểm M và N sao cho BM=CN . Gọi I là giao điểm của MC và BN
a) CMR IM=IN
b) Tia phân giác của góc AMC cắt AI , AN lần lượt tại O và K . BO cắt AN tại Q .CMR tam giác OKQ cân
Cho tam giác ABC đều.Trên tia đối BA và CA lấy lần lượt các điểm M,N sao cho BM=CN.Gọi I là giao điểm MC và BN.
a) CMR: MI=NI
b) Tia p/g \(\widehat{AMC}\)cắt AI và AN tại O và K.CMR: OM>\(\frac{MC}{2}\)
c) BO cắt AN tại Q.CMR: tam giác OKQ cân
Cho tam giác ABC đều. Trên tia đối của tia BA và tia CA lấy M, N sao cho BM= CN. MC giao BN tại I.
a) CMR: MI= NI
b) Tia phân giác góc AMC cắt AI, AN theo thứ tự O và K. CMR: MO> MC/ 2.
c) BO giao AN tại Q. CMR: tam giác OKQ cân
Cho tam giác ABC cân ở A. Trên tia đối của các tia BA va CA lấy lần lượt các diểm M và N sao cho BM=CN. Gọi I là giao điểm của MC và BN.
a) CM: MI=NI
b) Tia phân giác của \(\widehat{AMC}\)cắt AI tại O. CM: MO>\(\frac{MC}{2}\).
Cho tam giác ABC vuông tại A , vẽ tia phân giác BM của góc B ( M thuộc AC ) . Trên BC xác định điểm N sao cho BA = BN
a , CMR tam giác ABM = tam giác NBM
b,So sánh AM và MC
c,Trên tia đối của tia AB lấy điểm E sao cho AE=CN.Gọi I là trung điểm của CE.CMR : B,M,I thẳng hàng
1 Cho tam giác ABC cân tại A đường cao AH. M là một điểm bất kì trên cạnh BC. Kẻ đường thẳng qua M và song song với AH cắt AB và AC lần lượt tại N và Q
a, CM tam giác ANQ cân
b, Tính các góc của tam giác ANQ biết góc ABC=70
c,Kẻ AI vuông góc với MQ. CM AI song song với BC và AI=MH
2 Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M trên tia đối của tia CA lấy N sao cho AM+AN=2AB. CMR:
a, BM=CN
b,BC cắt MN tại trung điểm I của MN
Cho tam giác ABC cân tại A trên tia đối của tia BA lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho CN = BM. Lấy I là trung điểm của BC, E là giao điểm BN và CM. CMR A,I,E thẳng hàng.