Cho tam giác ABC cân tại A với góc BAC nhọn . Một cung tròn BC nằm trong tam giác ABC và tiếp xúc với AB ,AC tại B và C , Trên cung BC lấy một điểm M rồi hạ đường vuông góc MI,MH,MK xuống các cạnh tương ứng BC,AC,AB.Gọi P là giao điểm của MB,IK và Q là giao điểm của MC,IH .
1/ Chứng minh rằng các tứ giác BIMK,CIMH nội tiếp được.
2/ chứng minh tia đối của tia MI là phân giác của góc HMK.
a) Ta thấy các tam giác vuông KMB và IMB có chung cạnh huyền MB nên M, K, B, I cùng thuộc đường tròn đường kính MB hay BIMK là tứ giác nội tiếp.
Các tam giác vuông MIC và MHC có chung cạnh huyền MC nên M, I, C, H cùng thuộc đường tròn đường kính MC hay CIMH là tứ giác nội tiếp.
b) Gọi T là giao điểm của MI với AB.
Do tứ giác BIMK nội tiếp nên \(\widehat{MKI}=\widehat{MBI};\widehat{KIM}=\widehat{KBM}\) (Hai góc nội tiếp)
Tương tự ta cũng có \(\widehat{HMC}=\widehat{HIC};\widehat{MCH}=\widehat{MIH}\)
Vậy nên \(\widehat{KMT}=\widehat{MKI}+\widehat{KIM}=\widehat{MBI}+\widehat{KBM}=\widehat{ABC}\)
\(\widehat{HMT}=\widehat{MIH}+\widehat{MHI}=\widehat{MCH}+\widehat{MCI}=\widehat{ACB}\)
Mà tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
Suy ra \(\widehat{KMT}=\widehat{HMT}\) hat MT là phân giác góc \(\widehat{KMH}\)
Vậy tia đối của tia MI chính là phân giác góc \(\widehat{KMH}\)