https://hoidap247.com/cau-hoi/214617
hông ai thèm giúp
sad cực mạnh:((
https://hoidap247.com/cau-hoi/214617
hông ai thèm giúp
sad cực mạnh:((
Cho ABC cân tại A, AB > BC, H là trung điểm của BC .
a) Chứng minh: ABH = ACH. Từ đó suy ra AH vuông góc với BC.
b) Tính độ dài AH nếu BC = 4 cm, AB = 6 cm.
c) Tia phân giác của góc B cắt AH tại I . Chứng minh tam giác BIC cân.
d) Đường thẳng đi qua A và song song với BC cắt tia BI, CI lần lượt tại M, N. Chứng minh A là trung điểm của đoạn thẳng MN.
e) Kẻ IE vuông góc với AB tại E, IF vuông góc với AC tại F. Chứng minh IH = IE = IF
f) Chứng minh: IC vuông góc với MC .
Cho tam giác ABC vuông tại A, AB<AC. Kẻ AH vuông tại BC (H thuộc BC). Trên BC lấy điểm I sao cho HI = HB. Trên tia đối của tia HA lấy điểm K sao cho HK = HA:
a) Chứng minh tam giác ABH = tam giác KIH
b) Chứng minh AB song song với KI
c) Vẽ IE vuông góc AC (E thuộc AC). Chứng minh K,I,E thẳng hàng
d) Trên tia đối của tia IA lấy điểm D sao cho ID = IA. Chứng minh góc IKD = góc IDK
. Cho ∆ABC cân tại A, kẻ AH BC (H ∈ BC). Gọi N là trung điểm của AC. a)Chứng minh ∆ABH = ∆ACH
b)Hai đoạn thẳng BN và AH cắt nhau tại G, trên tia đối của tia NB lấy K sao cho NK = NG.
Chứng minh: AG // CK
c)Chứng minh: G là trung điểm của BK
d)Gọi M là trung điểm AB. Chứng minh BC + AG > 4GM.
BÀI 4 :Cho tam giác ABC cân tại A, vẽ AH vuông góc BC tại H. biết AB = 10cm, BH = 6cm.
1. Tính AH.
2. Chứng minh Δ ABH = Δ ACH.
3.Trên cạnh BA lấy điểm D, CA lấy điểm E sao cho BD = CE. Chứng minh tam giác HDE cân.
4.Chứng minh DE // BC.
Cho tam giác ABC có AB = AC. Gọi H là trung điểm của BC. a) Chứng minh: ABH ACH∆= ∆ và AH BC⊥b) Gọi E là trung điểm của AC, trên tia đối của tia EH lấy điểm K sao cho EK = EH. Chứng minh: AK // BC. c)Chứng minh: HK = AB. Hết
Cho tam giác ABC cân tại A, có AH là tia phân giác của BAC ( H thuộc BC) ,vẽ HE vuông góc với AB ( E thuộc AB) ,vẽ HI vuông góc với AC ( I thuộc AC) .Trên tia đối của tia EH lấy điểm N sao cho EN = EH a) chứng minh tam giác AHE= tam giác AHI vad AN =AH b) trên tia đối của tia IH lấy điểm M sao cho IM =IH ,chứng minh AH vuông góc với MN c) gọi p là giao điểm của AE và MN, vẽ DK vuông góc với AN (K thuộc AN) chứng minh IM lớn hơn HK
Bài 2. Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC.
a) Chứng minh ΔAHB = ΔAHC.
b) Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh rằng ΔADE cân.
Cho tam giác ABC có AB < AC. Lấy E thuộc AC sao cho AE=AB. Trên tia đối của tia BA lấy điểm D sao cho BD=EC.
a) Chứng minh rằng tam giác ADC cân tại A.
b) Kẻ AH vuông góc với BE tại H, AH cắt DC tại K. Chứng minh AK là đường trung trực của DC.