Lời giải:
a) Xét tam giác $AHB$ và $AHC$ có:
$AH$ chung
$AB=AC$ do $ABC$ cân tại $A$
$\widehat{AHB}=\widehat{AHC}=90^0$
$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv)
b)
Vì $ABC$ cân tại $A$ nên $\widehat{ABC}=\widehat{ACB}$
$\Rightarrow 180^0-\widehat{ABC}=180^0-\widehat{ACB}$
hay $\widehat{ABD}=\widehat{ACE}$
Xét tam giác $ABD$ và $ACE$ có:
$BD=CE$
$AB=AC$
$\widehat{ABD}=\widehat{ACE}$ (cmt)
$\Rightarrow \triangle ABD=\triangle ACE$ (c.g.c)
$\Rightarrow AD=AE$ nên $ADE$ là tam giác cân.
Đúng 0
Bình luận (0)