Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Việt Trung

Cho tam giác ABC có góc B = góc C, kẻ AH  vuông góc BC, H thuộc BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh:

a)    AB = AC

b)    Tam giác ABD = Tam giác ACE

c)    Tam giác ACD = Tam giác ABE

d)    AH là tia phân giác của góc DAE

e) Kẻ BK vuông góc AD, CI vuông góc AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua

Nguyễn Lê Phước Thịnh
8 tháng 1 2022 lúc 21:29

a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

hay AB=AC

b: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

c: Xét ΔACD và ΔABE có 

AC=AB

CD=BE

AD=AE

Do đó: ΔACD=ΔABE

d: Ta có: ΔABC can tại A

mà AH là đường cao

nên H là trung điểm của BC

Ta có: DB+BH=DH

CE+CH=HE

mà DB=CE

và BH=CH

nên DH=HE

hay H là trung điểm của DE

Xét ΔADE có AD=AE
nên ΔADE cân tại A

mà AH là đường trung tuyến

nên AH là tia phân giác của góc DAE


Các câu hỏi tương tự
_MIU DevilGamer9_
Xem chi tiết
Hoàng Quân Đinh
Xem chi tiết
Đinh Hoàng Bình An
Xem chi tiết
Bùi Thị Ánh Tuyết
Xem chi tiết
Hà Lê Hồ
Xem chi tiết
Linh Lê
Xem chi tiết
03.Trần Minh Anh
Xem chi tiết
Vũ Mình Châu
Xem chi tiết
Duyhoc dot
Xem chi tiết