cho tam giác ABC cân tại A , vẽ BD vuông góc vs AC tại D, CE vuông góc vs AB tại E. gọi H là giao điểm của BD và CE. CM
a)BD=CE
b)AH vuông góc vs BC
c)góc EAH= góc DAH
Cho tam giác cân tại A( góc A<90 độ), vẽ BD vuông góc AC, CE vuông góc AB. Gọi H là giao điểm của BD và CE. Chứng minh:
a)AB//HK. b)Tam giác AKI cân.
c)AH là đường trung trực của ED. d)Trên tia đối của tia DB lấy điểm K sao cho DK=DB. Chứng minh góc ECB=DKC.
Cho tam giác ABC cân tại A ( AB > BC ) . Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E
a) Chứng minh rằng : tam giác DAB = tam giác EAC và tam giác ADE cân
b) Gọi H là giao điểm của BD và CE . Chứng minh rằng : AH là tia phân giác của góc BAC
c) Chứng minh rằng : AH > CH
Cho tam giác ABC cân tại A (góc A < 90 độ ). Vẽ BD vuông góc AC tại D ; CE vuông góc AB tại E . Gọi I là giao điểm của BD và CE . Chứng minh: a) tam giác BEC= tam giác CDB .
b) AD =AE .
c) AI là tia phân giác của góc BAC .
d) DE / /BC .
e) Gọi M là trung điểm của cạnh BC . Chứng minh ba điểm A ,I ,M thẳng hàng.
1. Cho tam giác ABC vuông ở A có AB<AC. AH vuông góc với BC tại H, D là điểm trên cạnh BC sao cho AD=AB. Vẽ DE vuông góc với BC tại E. Chứng mih rằng AH=HE.
2. Cho tam giác ABC vuông cân tại A.. Qua A vẽ đường thẳng d ở ngoài tam giác ABC . Vẽ BD vuông góc với d taị D. CE vuông góc với d tại E. M là trung điểm CB. Chứng minh rằng:
a) BD + CE = DE
b) Tam giác MDE là tam giác vuông cân
Cho tam giác ABC cân tại A(AB>BC).Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E.Gọi H là giao điểm của BD và CH. Chứng minh rằng AH>CH
Cho tam giác ABC cân tại A ( góc A < 90 độ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: tam giác ABD = tam giác ACE.
b) Chứng minh: tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh: góc ECB = góc DKC.
Bài 4. Cho tam giác ABC cân tại A (Â < 90o). Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE.
a)Chứng minh tam giác ABD = tâm giác ACE để suy ra CE = BD
b)Chứng minh AH là phân giác của góc BAC.
c)Chứng minh DE // BC
d)Trên tia CE lấy điểm M sao cho E là trung điểm của HM. Trên tia BD lấy điểm N sao cho D là trung điểm của HN. Chứng minh AM = AH và tam giác AMN cân.
e)Tam giác ABC cho trước phải có điều kiện gì để tam giác AMN là tam giác đều.
Cho tam giác ABC cân tại A vẽ BD vuông goác vơia AC tại D, CE vuông góc với AB tại E . Gọi H là giao điểm của BD và CE . Cmr
a,AH vuông góc BC
b, AD =CE , BD = AE
c, MB mũ 2 + MC mũ 2 = 2 MA mũ 2
b, góc