Hình vẽ:
a) Xét \(\Delta\)ABD và \(\Delta\)ACE có:
AB = AC ( \(\Delta\)ABC cân )
^BAD = ^CAE ( ^A chung )
^ADB = ^AEC = 90o
=> \(\Delta\)ABD = \(\Delta\)ACE ( ch - gn ) => AD = AE ( 1)
Xét \(\Delta\)AEI và \(\Delta\)ADI có:
AI chung
AD = AE ( theo (1) )
^AEI = ^ADI = 90o
=> \(\Delta\)AEI = \(\Delta\)ADI ( ch - cgv )
b) Từ (a) => ^EAI = ^DAI
=> AI là phân giác ^EAD
hay AI là phân giác trong ^BAC (2)
Mặt khác: \(\Delta\)BAC cân tại A có M là trung điểm BC
=> AM là đường trung tuyến \(\Delta\)ABC
=> AM là phân giác trong ^BAC (3)
Từ (2) ; (3) => A; I; M thẳng hàng.
Vì 2 đường cao BD và CE cắt nhau tại I nên I là trực tâm của tam giác ABC
Suy ra AI là đường cao thứ 3 của tam giác ABC, mà tam giác ABC cân tại A nên AI đồng thời là tia phân giác của góc A
Suy ra \(\widehat{EAI}=\widehat{DEI}\)
Xét \(\Delta AEI,\Delta ADI\)có:
\(\widehat{AEI}=\widehat{ADI}=90^0\)
AI chung
\(\widehat{EAI}=\widehat{DEI}\)
=> \(\Delta AEI=\Delta ADI\)(ch-gn)
b) Vì AI là đường cao thứ 3 của tam giác ABC, mà tam giác ABC cân tại A nên AI đồng thời là là trung tuyến ứng với cạnh BC, mà M là trung điểm của BC nên A, I, M thẳng hàng