a, Xét tg AHB và tg AHC, có:
AB=AC(tg cân)
góc AHB= góc AHC(=90o)
góc B= góc C(tg cân)
=> tg AHB= tg AHC(ch-gn)
b,Xét tg BMH và tg CNH, có:
góc B= góc C(tg cân)
BH=CH(2 cạnh tương ứng)
góc BMH= góc CNH(=90o)
=> tg BMH= tg CNH(ch-gn)
Xét tg AMH và tg ANH, có:
AH chung.
góc AMH= góc ANH(=90o)
MH=HN(2 cạnh tương ứng)
=> tg AMH= tg ANH(ch- cgv)
=> AM=AN(2 cạnh tương ứng)
=> tg AMN là tg cân.
c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:
Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.
Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:
MN // BC.