Bài 4.Cho tam giác ABC cân tại A, đường cao AH ( H thuộc BC ).
a, Chứng minh rằng tam giác ABC=tam giác AHC
b, Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD=DH
c, Gọi E là trung điểm của AC, CD cắt AH tại G. Chứng minh B, G, E thẳng hàng.
d, Chứng minh chu vi tam giác ABC>AH+3GB
help me
. Cho tam giác ABC cân tại A, AH là đường phân giác (H thuộc BC). a) Chứng minh: tam giác ABH = tam giác ACH. b) Gọi I là trung điểm của cạnh AC, trên tia đối của tia IH lấy điểm F sao cho IF=IH. Chứng minh: AH = FC. c) Qua H kẻ đường thẳng song song với AC, đường thẳng này cắt tia FC tại K. Chứng minh: HC là tia phân giác của góc FHK d) Gọi M là giao điểm của HC và KI, tia FM cắt HK tại E. Biết AH=4cm, chứng minh: chu vi tam giác HIE lớn hơn 8cm
Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC)
a)Chứng minh ∆AHB = ∆AHC
b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH
c) Gọi E là trung điểm AC, CD cắt AH tại G. Chứng minh B, G, E thằng hàng.
d) Chứng minh chu vi ∆ABC > AH + 3BG
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
A) chứng minh tam giác ahb = tam giác ahc
B) từ h kẻ đường thẩng song song với ac, cắt ab tại d. Chứng minh tam giác adh cân đó suy ra ad =dh
C) gọi e trung điểm ac, cd cất ah tại g. Chứng minh b, g, e thẳng hàng
D) chứng minh chu vi tam giác abc > ah + 3bg
Cho ΔABC cân tại A. Vẽ AH vuông góc BC tại H
a) Chứng minh Δ AHB = ΔAHC
b) Gọi I là trung điểm của HC. Qua I vẽ đường thẳng vuông góc với HC, đường thẳng này cắt AC tại D. Chứng minh ΔDHC cân tại D
c) Gọi G là giao điểm của AH và BD, M là trung điểm AB. Chứng minh GM=\(\dfrac{1}{2}\) GB
Cho tam giác ABC cân tại A. Gọi H là trung điểm BC
a)Chứng minh tam giác ABH=tam giác ACH và AH là tia phân giác của góc BAC
b)Đường thẳng đi qua điểm H và song song với đường thẳng AC, cắt cạnh AB tại điểm D .Chứng minh tam gíac ADH là tam giác cân.
c) Chứng minh CD< (AC+BC)/2
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D. a) Chứng minh ΔABD = ΔACD. b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC. c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân. d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Cho tam giác ABC vuông tại A có AB<AC. Vẽ AH vuông góc với cạnh BC tại. Trên tia đối của tia AH lấy điểm Dsao cho DH=AH.
a) Chứng minh tam giác HCD= tam giác HCA
b)Chứng minh BD vuông góc với DC
c)Qua điểm Avẽ đường thẳng song song với cạnh BC, qua điểm Cvẽ đường thẳng song song với cạnh AB, hai đường thẳng này cắt nhau tại E. Chứng minh AE=BC
d)Gọi M là trung điểm cạnh HC, qua Mvẽ đường thẳng vuông góc với cạnh HC cắt cạnh DC tại I. Từ H vẽ đường thẳng vuông góc với cạnh AB tại K. Chứng minh ba điểm H,K,I thẳng hàng.