Cho tam giác ABC đều . Trên tia đối của tia BA , CA lấy lần lượt các điểm M và N sao cho BM=CN . Gọi I là giao điểm của MC và BN
a) CMR IM=IN
b) Tia phân giác của góc AMC cắt AI , AN lần lượt tại O và K . BO cắt AN tại Q .CMR tam giác OKQ cân
Cho tam giác ABC cân tại A. Trên tia đối của các tia BA và CA lấy lần lượt các điểm M và N sao cho BM = CN. Gọi I là giao điểm của MC và BN. Tia phân giác của góc AMC cắt AI tại O. Chứng minh rằng MO > MC/2 (Không cần vẽ hình)
Cho tam giác ABC cân tại A.Tren tia đối của BA và CA lần lượt lấy các điểm M và N sao cho BM=CN.Gọi I là giao điểm của CM và BN.
a) CMR: MI=NI
b) Tia phân giác của góc AMC cắt AI tại O.CMR: MO> MC/2
Cho tam giác ABC đều. Trên tia đối của tia BA và tia CA lấy M, N sao cho BM= CN. MC giao BN tại I.
a) CMR: MI= NI
b) Tia phân giác góc AMC cắt AI, AN theo thứ tự O và K. CMR: MO> MC/ 2.
c) BO giao AN tại Q. CMR: tam giác OKQ cân
Cho tam giác ABC cân ở A. Trên tia đối của các tia BA va CA lấy lần lượt các diểm M và N sao cho BM=CN. Gọi I là giao điểm của MC và BN.
a) CM: MI=NI
b) Tia phân giác của \(\widehat{AMC}\)cắt AI tại O. CM: MO>\(\frac{MC}{2}\).
Cho tam giác ABC đều.Trên tia đối BA và CA lấy lần lượt các điểm M,N sao cho BM=CN.Gọi I là giao điểm MC và BN.
a) CMR: MI=NI
b) Tia p/g \(\widehat{AMC}\)cắt AI và AN tại O và K.CMR: OM>\(\frac{MC}{2}\)
c) BO cắt AN tại Q.CMR: tam giác OKQ cân
Cho tam giác ABC vuông cân tại B. Tia phân giác \(\widehat{B}\) cắt AC tại K. Trên tia đối của tia KB lấy điểm D sao cho KD= KB
Gọi M,N lần lần lượt là trung điểm của AB,BC
Gọi I là giao điểm của DN và MC
CMR : a, MC=DN và MC vuông vs DN
b, Tam giác ADI cân
Cho tam giác ABC cân tại A trên tia đối của tia BA lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho CN = BM. Lấy I là trung điểm của BC, E là giao điểm BN và CM. CMR A,I,E thẳng hàng.
Cho tam giác ABC cân tại A. Trên BC lấy 2 điểm M, N sao cho BM = MN = NC = \(\frac{1}{3}\)BC. CMR: a)\(\widehat{MAN}>\widehat{BAM}\)
b) Hai tia phân giác của 2 góc AMC và ACB cắt nhau tại I. Gọi E là giao điểm của tia phân giác góc ACB với AN. CMR: E nằm giữa 2 điểm C và I.
c) Qua I, kẻ đường thẳng song song với BC cắt AM và AC lần lượt tại P và Q. CMR: PQ < BC.