Cho tam giác ABC cân tại A. Trên cạnh AB lấy D , trên tia đối của CA lấy điểm E sao cho BD= CE. Qua D kẻ đường thẳng song song với AC cắt BC tại F. Gọi O là giao điểm của DE và CF. Chứng minh
a) Tam giác BDF cân
b) O là trung điểm CF
c) CD // EF
Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:
a) Tam giác ABC cân ở A
b) O là trọng tâm của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:
a) Góc CEB= góc ADC và Góc EBH= góc ACD
b) BE vuông góc BC
C) DF song song BE
Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK
a) Tính AB
b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông
c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK
d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK
Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm
a) Tính AC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE
d) Chứng minh: BE vuông góc với FC
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của DE và BC. Qua E vẽ đường thẳng song song với AB, cắt BC tại F.
a) Chứng minh: tam giác BDI = tam giác FEI.
b) Chứng minh I là trung điểm của DE.
Cho tam giác ABC vuông tại A có AB < AC, gọi M là trung điểm của BC,trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a)Chứng minh :tam giác ABM = tam giác DCM. Từ đó suy ra AB // CD.
b)Trên tia đối của tia CD lấy điểm E sao cho CA = CE, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE.
c)Kẻ AH vuông góc BC (H thuộc BC). Qua E kẻ Đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh : AF = BC.
Cho tam giác ABC vuông tại A có AB<AC, gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MA = MD
a) Chứng minh tam giac ABM = tam giác DCM. Từ đó suy ra AB//CD
b)Trên tia đối của tian CD lấy điểm E sao cho CA = Ce, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE
c) Kẻ AH vuông góc với BC (H thuộc BC). Qua E kẻ đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh: AF=BC
Cho ∆ABC vuông tại A có AB < AC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB.
a) Chứng minh ABC = ADC.
b) Gọi M là trung điểm của CD. Qua D vẽ đường thẳng song song với BC cắt BM tại E. Chứng minh: ∆CDE cân
c) Gọi I là giao điểm của AC và BE. Chứng minh: BC + BD > IM
Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ
đường thẳng vuông góc với BD, cắt BC tại E. Đường thẳng d đi qua C và song
song với AB cắt AE tại G. Trên tia đối của tia DE lấy điểm F sao cho DE = DF.
a) Chứng minh tam giác ECG cân
b) Chứng minh AE = 2DF
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của DE và BC. Qua E vẽ đường thẳng song song với AB, cắt BC tại F.
a) Chứng minh: DBDI = DFEI.
b) Chứng minh I là trung điểm của DE.
Giúp mình với nha
Camon trước :))
Cho tam giác ABC nhọn có AB < AC. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Qua
B kẻ đường thẳng song song với CD cắt đường thẳng AC tại E.
a, Chứng minh rằng BE = CD; ED =BC
b, Gọi P, Q lần lượt là trung điểm của BE, CD. Chứng minh rằng A là trung điểm của PQ
c, Gọi M là điểm bất kỳ nằm trong tam giác ABC. Xác định vị trí của M để biểu thức
MA.BC +MB.AC +MC.AB đạt giá trị nhỏ nhất. Làm phần a và b thôi cũng được ạ, mình cần hình nữa ạ