Cho tam giác ABC vuông tại A nội tiếp đường tròn tâm O .Kẻ đuongừ kính AD .Gọi M là trung điểm của AC ,I là trung điểm của OD .
a) cm OM // DC
b)cm tam giác ICM cân
c) BM cắt AD tại N.cm IC^2=IA.IN
Tam giác ABC cân tại A nội tiếp (O) , M là trung điểm của AC kẻ đường kính AD , I là trung điểm của OD , N là giao điểm của BM và AD
a, OM//DC
b, tam giác IMC cân
c, IA.IN = IC2
Cho tam giác ABC (gócC#90 độ),các đường cao AD,BE cắt nhau tại H cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại I và K
a) CM: các tứ giác CDHE nội tiếp . Xác định tâm đường tròn ngoại tiếp tứ giác đó
b) CM: tam giác CKI cân
c)CM: AH=AK
d) Kẻ đường kính BOF (O là tâm đường tròn ngoại tiếp tam giác ABC). Gọi P là trung điểm của AC . CM: 3 điểm H,P,F thẳng hàng
1, Cho tam giác nhọn ABC co H là trực tâm, gọi M,N lần lượt là trung điểm của BC và AH. Đường phân giác trong góc A cắt MN tại K. CM AK vuông góc vs HK
2, Cho tam giác ABC nội tiếp đường tròn (O), Gọi AH, AD lần lượt là đường cao, đường phan giác trong của tam giác ABC (H,D thuộc BC). Tia AD cắt (O) tại E, tia EH cắt (O) tại F vaf tia FD cắt (O) tại K. CM AK là đường kính của (O)
cho tam giác nhọn abc ( ab < ac ) nội tiếp đường tròn (o) đường kính ad. tiếp tuyến tại d của đường tròn (o) cắt tia bc tại s. tia so cắt ab,ac lần lượt tại m,n. gọi h là trung điểm của bc. chứng minh: om=on
Cho tam giác ABC nhọn (AB lớn hơn AC) nội tiếp đường tròn tâm O. Kẻ đường cao AH và đường kính AD. Gọi M là hình chiếu của B trên AD. a,Tứ giác ABMH nội tiếp b, Tiếp tuyến tại D cắt AB, AC lần lượt tại E và F.CM :AB.AE = AC.p AF c,Gọi I là trung điểm BC. Đường thẳng qua I song song với DC cắt BM tại K. Tia DK cắt đường tròn tại S. BC và EF cắt nhau tại Q.CM : Tứ giác SBKI nội tiếp d, SQ là tiếp tuyến của đường tròn tâm O
1 .
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I, đường kính AH cắt AB, AC lần lượt tại M và N, D là giao điểm của MN và OA
a) chứng minh AM.AB=AN.AC và tứ giác BMNC nội tiếp
b) cm tam giác ADI đồng dạng tam giác AHO
c) gọi E là giao điểm BC và NM, K là giao điểm AE và (I). cm góc BKC = 90°
2 .
Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại H, AH cắt BC tại D.
a) Chứng minh: AD vuông góc BC
b) Chứng minh: AD là đường phân giác của góc EDF
c) Đường tròn đường kính EC cắt AC tại M, BM cắt (O) tại K. Chứng minh: KC đi qua trung điểm của HF
1/ Cho tam giác ABC vuông tại A có đường phân giác AD và đường trung tuyến BM vuông góc tại E. Gọi H là trung điểm AE. BE cắt AC tại K.
a) Cm: tam giác BDK vuông cân tại D
b) Cm : (AD/AC)2 = 2/9
2/ Cho tam giác ABC vuông cân tại có đường trung tuyến AM. Vẽ MH vuông AB ( H thuộc AB ). Từ A hạ AI vuông CH tại I. Gọi N là giao điểm IC và AM. BI cắt AC tại K.
a) Cm: BI vuông với IM tại I
b) Cm: AN.AB = IC.MK
cho tam giác nhọn ABC ( AB<AC) nội tiếp đường tròn ( O) đường kính AD. tiếp tuyến tại D của đường tròn ( O ) cắt tia BC tại S. Tia SO cắt AB,AC lần lượt tại M,N . Gọi H là trung điểm của BC.Chứng minh rằng OM=ON