Cho tam giác ABC nhọn nội tiếp trong đường tròn (O;R) . Vẽ đường kính AD và đường cao AH của tam giác ABC .
1/ CMR : AB.AC=AH.AD
2/đường thẳng AH cắt đường tròn (O) tại E . Gọi K là điểm đối xứng của E qua BC . CMR K là trực tâm của tam giác ABC .
3/ hai đường thẳng CK và AB cắt nhau tại M . Hai đường thẳng BK và AC cắt nhau tại N . CMR : AD vuông góc với MN .
4/ cho góc BAC = 45 độ CMR : 5 điểm B,M ,N O,C cùng thuộc một đường tròn tâm I . Tính diện tích hình phẳng giới hạn bởi dây MN và cung MN của đường tròn (I) theo R .
Chỉ giúp mình câu 4/ nha !
Cho tam giác cân ABC nội tiếp đường tròn (O; R). Kẻ đường kính AD cắt BC tại H. Gọi M là một điểm trên cung nhỏ AC. Hạ BK ^ AM tại K. đường thẳng BK cắt CM tại E
a, Chứng mnh bốn điểm A, B, H, J thuộc một đường tròn
b, Chứng minh tam giác MBE cân tại M
c, Tại BE cắt đường tròn (O; R) tại N (N khác B). Tính độ dài cung nhỏ MN theo R. Giả sử A ^ = 40 0
1) Cho (O) và (I) lần lượt là đường tròn ngoại tiếp và đường tròn nội tiếp của tam giác ABC. Tia AI cắt (O) tại D, tia BI cắt (O) tại E, tia CI cắt (O) tại F (D khác A, E khác B, F khác C). Chứng minh rằng:
AD + BE + CF > AB + BC + CA
2) Cho tam giác cân ABC nội tiếp trong đường tròn (O;R) (AB = AC và BAC = 300). Gọi D là điểm thuộc cung nhỏ AB sao cho cung BD = 300, E là điểm thuộc cung nhỏ AC sao cho DE = AB và EA < EC, DE cắt AB và AC lần lượt tại M và N. Tính: AB và AM theo R.
Cho tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên nội tiếp đường tròn tâm O bán kính r .Tiếp tuyến tại B và C của đường tròn tâm O bán kính r cắt nhau tại D.
a) Chứng minh tứ giác ABC nội tiếp được đường tròn
b) Đường thẳng BD và AC cắt nhau tại E Chứng minh EB²= EC×EA
c) Từ m trên cung nhỏ BC vẽ MI vuông góc với BC MH vuông góc với AB MF vuông góc với AC Chứng minh E,H,F thẳng hàng
d) cho góc BAC bằng 30 độ Tính theo r diện tích của tứ giác ABCD
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
cho tam giác ABC không có góc tù (AB<AC), nội tiếp đuờng tròn (O;R).Các tiếp tuyến tại B và C cắ nhau tại M. từ M kẽ đường thẳng song song với AB, đường thằng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I.
a) chứng minh tứ giác MBIC là tứ giác nội tiếp
b) chứng minh FI.FM=FD.FE
c) tính diện tích hình giới hạn bởi dây cung BC và cung nhỏ BC biết OA=5cm biết góc BAC =50 .
Cho đường tròn (O;R) và một điểm A ngoài đường tròn (O) sao cho OA = 3R. Từ A vẽ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc với BC b) Từ B vẽ đường thẳng song song với AC cắt đường tròn tâm (O) tại D (D khác B), AD cắt đường tròn (O) tại E (E khác D). Tính tích AD.AE theo R. c) Tia BE cắt AC tại F. Chứng minh F là trung điểm AC. d) Tính theo R diện tích tam giác BDC.
Cho tam giác ABC vuông tại A. Đường tròn (O;R), đường kính AB cắt BC tại D. Tiếp tuyến của (O) tại D cắt AC ở P.
a.cm: tứ giác AODP nội tiếp
b.cm : tam giác PDC cân
c. khi góc ACB= 30, tính diện tích giới hạn bởi PA, PD và cung nhỏ AD của (O) theo R
cho nửa đường tròn tâm O, đường kính AB. trên nửa đường tròn lấy 2 điểm C, D sao cho cung AC bé hơn cung AD. Hai đoạn thẳng AD và BC cắt nhau tại E. vẽ EF vuông góc vs AB tại F. a,CMR tứ giác ACEF nội tiếp được trong 1 đường tròn. b, cmr BE.BC=BF.BA c, cho góc ABC=30 độ. Tính diện tích hình quạt tròn OAC theo R