ta tính được AH=16(cm)
Suy ra Sabc=162/2=128(cm2)
ta tính được AH=16(cm)
Suy ra Sabc=162/2=128(cm2)
cho tam giác ABC cân tại A nội tiếp (O;10)biết đường cao AH bằng độ dài cạnh BC tính Sabc
Cho tam giác ABC cân tại A, đường cao AH bằng 10cm, đường cao BK bằng 12cm. Độ dài cạnh đáy BC là cm.
Cho \(\Delta ABC\) cân tại A nội tiếp đường tròn (O; 10cm), biết độ dài đường cao AH bằng độ dài cạnh BC. Diện tích \(\Delta ABC\) là ... \(cm^2\)
Độ dài các cạnh của một tam giác ABC vuông tại A, thỏa mãn các hệ thức sau:
BC = AB + 2a (1)
AC = 1/2.(BC + AB) (2)
a là một độ dài cho trước
Tam giác ABC nội tiếp được trong nửa hình tròn tâm O. Tính diện tích của phần thuộc nửa đường tròn nhưng ở ngoài tam giác đó
Cho tam giác ABC nội tiếp đường tròn đường kính BC. Kẻ đường cao AH của tam giác. Biết BC = 20cm, BH:HC = 9:16. Diện tích tam giác ABC là ... cm2
Cho tam giác ABC cân nội tiếp đường tròn (O;R) có độ dài cạnh AB=AC=R ( BC khác đường kính)
a) Cm AO là tia phân giác của góc BAC
b) Cm BC > AB suy ra thứ tự khoảng cách từ tâm O đến các cạnh của tam giác ABC
c) Tính BC theo R chiều cao hạ từ A và diện tích tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 10cm, AH = 6cm. Tính độ dài các cạnh AC, BC của tam giác ABC.
A. AC = 6,5 (cm); BC = 12 (cm)
B. AC = 7,5 (cm); BC = 12,5 (cm)
C. AC = 8 (cm); BC = 13 (cm)
D. AC = 8,5 (cm); BC = 14,5 (cm)
bài 1 : Cho tam giác cân ABC có AB=AC=10cm, BC=12cm nội tiếp đường tròn
tâm O . Đcao AH của tam giác ABC cắt đường tròn tâm O tại D . Qua D kẻ
tiếp tuyến với đường tròn tâm O cắt AC , AB lần lượt tại M,N
a) c/m : MN//BC
b) tính bán kính đường tròn tâm O
c) tính độ dài đoạn MN
Cho tam giác ABC cân tại A nội tiếp trong đường tròn (O;R) có AB = R.
a, CMR: AO là tia phân giác của góc BAC
b, C/tỏ BC > R. So sánh khoảng cách từ tâm O đến các cạnh của tam giác ABC.
c, Tính theo R độ dài cạnh BC và chiều cao AH hạ từ A đến BC